A transepithelial pathway delivers succinate to macrophages, thus perpetuating their proinflammatory metabolic state Graphical abstract Highlights d Succinate uptake is elevated in macrophages to perpetuate their pro-inflammatory state d Na + -dependent transporters mediate transepithelial succinate delivery into macrophages d Succinate concentrations are elevated in the serum and feces of IBD patients d Succinate-metabolizing bacteria are altered in IBD patients
Background In the kidney, low urinary citrate increases the risk for developing kidney stones, and elevation of luminal succinate in the juxtaglomerular apparatus increases renin secretion, causing hypertension. Although the association between stone formation and hypertension is well established, the molecular mechanism linking these pathophysiologies has been elusive. Methods To investigate the relationship between succinate and citrate/oxalate levels, we assessed blood and urine levels of metabolites, renal protein expression, and BP (using 24-hour telemetric monitoring) in male mice lacking slc26a6 (a transporter that inhibits the succinate transporter NaDC-1 to control citrate absorption from the urinary lumen). We also explored the mechanism underlying this metabolic association, using coimmunoprecipitation, electrophysiologic measurements, and flux assays to study protein interaction and transport activity. Results Compared with control mice, slc26a6 2/2 mice (previously shown to have low urinary citrate and to develop calcium oxalate stones) had a 40% decrease in urinary excretion of succinate, a 35% increase in serum succinate, and elevated plasma renin. Slc26a6 2/2 mice also showed activity-dependent hypertension that was unaffected by dietary salt intake. Structural modeling, confirmed by mutational analysis, identified slc26a6 and NaDC-1 residues that interact and mediate slc26a6's inhibition of NaDC-1. This interaction is regulated by the scaffolding protein IRBIT, which is released by stimulation of the succinate receptor SUCNR1 and interacts with the NaDC-1/slc26a6 complex to inhibit succinate transport by NaDC-1. Conclusions These findings reveal a succinate/citrate homeostatic pathway regulated by IRBIT that affects BP and biochemical risk of calcium oxalate stone formation, thus providing a potential molecular link between hypertension and lithogenesis.
SIRS is associated with lymphopenia, and prolonged lymphopenia of septic patients has been associated with increased mortality risk. We hypothesize that elevated adenosine during SIRS down-regulates G-coupled AR, which signals an effect that sensitizes a cAMP-dependent lymphotoxic response. In this study, we evaluate the role of adenosine in SIRS-mediated lymphopenia and impaired IL-15 production. Cecal ligation and puncture was used to induce sepsis-associated SIRS in mice. BMDCs were cultured and used to measure the effect of adenosine on IL-15. We found that AR mRNA levels were significantly down-regulated and AR-dependent G activity was abolished in T cells of septic mice. In accordance, cAMP was elevated in isolated T cells from cecal ligation and puncture compared with sham-treated mice. Similar to septic mice, leukopenia was evident in sham AR-KO mice, after treatment with the AR antagonist (8-cyclopentyl-1,3-dipropylxanthine), or after AR desensitization. In contrast, AR-KO mice were protected from leukopenia. In addition, we observed that septic AR-KO mice exhibited low IL-15 levels. Cultured BMDC agonists of AR and AR inhibited IL-15 production and adenosine blocked IL-15-dependent proliferation of cytotoxic T cells that were cocultured with stimulated BMDCs. To conclude, we suggest that SIRS-associated lymphopenia is initiated by AR desensitization and adenosine-mediated inhibition of IL-15 production is part of the mechanism that accounts for the delay in leukopenia recovery in patients with severe sepsis. Interference with adenosine signaling may thus be potentially beneficial for septic patients with leukopenia.
Metabolite transport across cellular membranes is required for bioenergetic processes and metabolic signaling. The solute carrier family 13 (slc13) transporters mediate transport of the metabolites succinate and citrate and hence are of paramount physiological importance. Nevertheless, the mechanisms of slc13 transport and regulation are poorly understood. Here, a dynamic structural slc13 model suggested that an interfacial helix, H4c, which is common to all slc13s, stabilizes the stationary scaffold domain by anchoring it to the membrane, thereby facilitating movement of the SLC13 catalytic domain. Moreover, we found that intracellular determinants interact with the H4c anchor domain to modulate transport. This dual function is achieved by basic residues that alternately face either the membrane phospholipids or the intracellular milieu. This mechanism was supported by several experimental findings obtained using biochemical methods, electrophysiological measurements in Xenopus oocytes, and fluorescent microscopy of mammalian cells. First, a positively charged and highly conserved H4c residue, Arg108, was indispensable and crucial for metabolite transport. Furthermore, neutralization of other H4c basic residues inhibited slc13 transport function, thus mimicking the inhibitory effect of the slc13 inhibitor, slc26a6. Our findings suggest that the positive charge distribution across H4c domain controls slc13 transporter function and is utilized by slc13-interacting proteins in the regulation of metabolite transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.