Bearings-only target tracking is commonly used in many fields, like air or sea traffic monitoring, tracking a member in a formation, and military applications. When tracking with synchronous passive multisensor systems, each sensor provides a line-of-sight measurement. They are plugged into an iterative least squares algorithm to estimate the unknown target position vector. Instead of using iterative least squares, this paper presents a deep-learning based framework for the bearing-only target tracking process, applicable for any bearings-only target tracking task. As a data-driven method, the proposed deep-learning framework offers several advantages over the traditional iterative least squares. To demonstrate the proposed approach, a scenario of tracking an autonomous underwater vehicle approaching an underwater docking station is considered. There, several passive sensors are mounted near a docking station to enable accurate localization of an approaching autonomous underwater vehicle. Simulation results show the proposed framework obtains better accuracy compared to the iterative least squares algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.