The release of effluents containing cadmium ions into aquatic ecosystems is hazardous to humans and marine organisms. In the current investigation, biosorption of Cd2+ ions from aqueous solutions by freely suspended and immobilized Turbinaria ornata biomasses was studied. Compared to free cells (94.34%), the maximum Cd2+ removal efficiency reached 98.65% for immobilized cells obtained via Box–Behnken design under optimized conditions comprising algal doses of 5.04 g L−1 and 4.96 g L−1, pH values of 5.06 and 6.84, and initial cadmium concentrations of 25.2 mg L−1 and 26.19 mg L−1, respectively. Langmuir, Freundlich, and Temkin isotherm models were suitably applied, providing the best suit of data for free and immobilized cells, but the Dubinin–Radushkevich model only matched the immobilized algal biomass. The maximum biosorption capacity of Cd2+ ions increased with the immobilized cells (29.6 mg g−1) compared to free cells (23.9 mg g−1). The Cd2+ biosorption data obtained for both biomasses followed pseudo-second-order and Elovich kinetic models. In addition, the biosorption process is controlled by film diffusion followed by intra-particle diffusion. Cd2+ biosorption onto the free and immobilized biomasses was spontaneous, feasible, and endothermic in nature, according to the determined thermodynamic parameters. The algal biomass was further examined via SEM/EDX and FTIR before and after Cd2+ biosorption. SEM/EDX analysis revealed Cd2+ ion binding onto the algal surface. Additionally, FTIR analysis confirmed the presence of numerous functional groups (hydroxyl, carboxyl, amine, phosphate, etc.) participating in Cd2+ biosorption. This study verified that immobilized algal biomasses constitute a cost-effective and favorable biosorbent material for heavy metal removal from ecosystems.
The large genetic evolution due to the sexual reproduction-mediated gene assortments and propensities has made Venturia inaequalis (causing apple scab) unique with respect to its management strategies. The resistance in apple germplasm against the scab, being controlled for by more than fifteen genes, has limited gene alteration-based investigations. Therefore, a biological approach of bacterial endophyte community dynamics was envisioned across the apple germplasm in context to the fungistatic behavior against V. inaequalis. A total of 155 colonies of bacterial endophytes were isolated from various plant parts of the apple, comprising 19 varieties, and after screening for antifungal behavior followed by morphological, ARDRA, and sequence analysis, a total of 71 isolates were selected for this study. The alpha diversity indices were seen to fluctuate greatly among the isolation samples in context to microflora with antifungal behavior. As all the isolates were screened for the presence of various metabolites and some relevant genes that directly or indirectly influence the fungistatic behavior of the isolated microflora, a huge variation among the isolated microflora was observed. The outstanding isolates showing highest percentage growth inhibition of V. inaequalis were exploited to raise a bio-formulation, which was tested against the scab prevalence in eight apple varieties under controlled growth conditions. The formulation at all the concentrations caused considerable reductions in both the disease severity and disease incidence in all the tested apple varieties. Red Delicious being most important cultivar of the northwestern Himalayas was further investigated for its biochemical behavior in formulation and the investigation revealed different levels of enzyme production, chlorophyll, and sugars against the non-inoculated control.
The presence of inorganic pollutants such as Cadmium(II) and Chromium(VI) could destroy our environment and ecosystem. To overcome this problem, much attention was directed to microbial technology, whereas some microorganisms could resist the toxic effects and decrease pollutants concentration while the microbial viability is sustained. Therefore, we built up a complementary strategy to study the biofilm formation of isolated strains under the stress of heavy metals. As target resistive organisms, Rhizobium-MAP7 and Rhodotorula ALT72 were identified. However, Pontoea agglumerans strains were exploited as the susceptible organism to the heavy metal exposure. Among the methods of sensing and analysis, bioelectrochemical measurements showed the most effective tools to study the susceptibility and resistivity to the heavy metals. The tested Rhizobium strain showed higher ability of removal of heavy metals and more resistive to metals ions since its cell viability was not strongly inhibited by the toxic metal ions over various concentrations. On the other hand, electrochemically active biofilm exhibited higher bioelectrochemical signals in presence of heavy metals ions. So by using the two strains, especially Rhizobium-MAP7, the detection and removal of heavy metals Cr(VI) and Cd(II) is highly supported and recommended.
Two billion people worldwide take rice ( Oryza sativa L.) as a staple food. Phosphorus (P) and Nitrogen (N) are the major requirements of rice; although these are available in limited concentrations within rice growing regions. Among different types of Plant growth-promoting rhizobacteria (PGPR), Phosphate solubilizing rhizobacteria (PSRB) constitute an important class. These are known for plant growth promotion by enhancing P and N uptake. PSRB are nowadays used as biofertilizers to restore the soil health. Under the present investigation identification, characterization and optimization of phosphate solubilizing activity of these microbes at different pH, temperature and salt concentrations was carried out. Thirty-seven isolates were recovered from different regions of rice rhizosphere on Pikovskaya (PVK) agar among which 15 isolates were recovered from R.S. Pura, 12 isolates from Bishnah and 10 isolates were recovered from Akhnoor sector of Jammu, India. A prominent halo zone of clearance was developed around the colonies of 12 different isolates, indicating phosphate solubilization activity. Four distinct isolates were amplified, cloned and sequenced for taxonomic identification using 16S primers. The results indicated that PS 1, PS 2, PS 3, PS 4 were related to Pseudomonas aeruginosa, Bacillus subtilis strain 1 , B. subtilis strain 2 , B. subtilis strain 3, respectively. These strains when grown at a wide range of ecological factors showed maximum growth at pH between 6.8 and 8.8, temperature between 28 °C and 37 °C and salinity between 1% and 2%. Screening for phosphate solubilization activity revealed that the halo zone diameter formed by these isolates extended from 2.1 to 3.2 mm. The phosphate solubilizing efficiency (SE) ranged from 35.4 to 50.9 with highest value of 50.9 by PS4 and maximum P solubilization of 10.22 µg/ml was recorded by PS4 at 7th day. Phosphate solubilization activity of these identified PSRB strains can be utilized and explored in the rice growing belts of Jammu region which are deficient in phosphorus. MIC value for zinc sulphate heptahydrate in 12 isolates varied from 1 mg/ml to 6 mg/ml. Phosphate solubilization activity and MIC of these identified PSRB strains can be utilized and explored in the rice growing belts of Jammu region which are deficient in phosphorus.
The current work is aimed at isolating and identifying new Entomopathogenic bacterium (EPB) strains associated with Steinernema feltiae and assessing the EPB’s biocontrol potential on Aphis punicae and Aphis illinoisensis adults in the laboratory. From S. feltiae, five bacterial isolates were isolated and molecularly characterized. Lysinibacillus xylanilyticus strain TU-2, Lysinibacillus xylanilyticus strain BN-13, Serratia liquefaciens strain TU-6, Stenotrophomonas tumulicola strain T5916-2-1b, and Pseudochrobactrum saccharolyticum strain CCUG are the strains. Pathogenicity tests demonstrated that bacterial cells were more toxic against the two aphid species than bacterial cell-free supernatants. S. tumulicola strain T5916-2-1b cells and filtrate were reported to have the strongest potential to kill A. punicae and A. illinoisensis individuals within 6 h after treatment, with 100% mortality of both insects 24 and 48 h after treatment. Based on the results of the study, it looked like endogenous Steinernema-associated EPB could be used directly as a biocontrol agent for A. punicae and A. illinoisensis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.