PHB is a biodegradable polymer based on renewable raw materials that could replace synthetic polymers in many applications. A big advantage is the resulting reduction of the waste problem, as well as the conservation of fossil resources. To arrange it for various applications, the surface is arranged by plasma-enhanced chemical vapor deposition (PECVD) with amorphous hydrogenated carbon layers (a-C:H). Here, on a 50 µm thick PHB-foil, a-C:H layers of different thicknesses (0-500 nm) were deposited in 50 nm steps. Surface topography was investigated by scanning electron microscopy (SEM), chemical composition by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and wettability checked by contact angle. In addition, layers were examined by synchrotron supported X-ray photoelectron spectroscopy (XPS) and near edge X-ray absorption fine structure (NEXAFS), which revealed thickness dependent changes of the sp 2 /sp 3 ratio. With increasing thickness, even the topography changes show internal, stress-induced phenomena. The results obtained provide a more detailed understanding of the predominantly inorganic a-C:H coatings on (bio)polymers via in situ growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.