Inspired by biological swimmers such as fish, a robot composed of a rigid head, a compliant body and a rigid caudal fin was built. It has the geometrical properties of a subcarangiform swimmer of the same size. The head houses a servo-motor which actuates the compliant body and the caudal fin. It achieves this by applying a concentrated moment on a point near the compliant body base. In this paper, the dynamics of the compliant body driving the robotic fish is modelled and experimentally validated. Lighthill's elongated body theory is used to define the hydrodynamic forces on the compliant part and Rayleigh proportional damping is used to model damping. Based on the assumed modes method, an energetic approach is used to write the equations of motion of the compliant body and to compute the relationship between the applied moment and the resulting lateral deflections. Experiments on the compliant body were carried out to validate the model predictions. The results showed that a good match was achieved between the measured and predicted deformations. A discussion of the swimming motions between the real fish and the robot is presented.
Advancements in imaging and segmentation techniques mean that three dimensional (3D) modeling of bones is now increasingly used for preoperative planning and registration purposes. Computer tomography (CT) scans are commonly used due to their high bone-soft tissue contrast, however they expose subjects to radiation.Alternatively, magnetic resonance imaging (MRI) is radiation-free: however, geometric field distortion and poor bone contrast have been reported to degrade bone model validity compared to CT. The present study assessed the accuracy of 3D femur and tibia models created from "Black Bone" 3T MRI and high resolution CT scans taken from 12 intact cadaveric lower limbs by comparing them with scans of the defleshed and cleaned bones carried out using a high-resolution portable compact desktop 3D scanner (Model HDI COMPACT C210; Polyga). This scanner used structured light (SL) to capture 3D scans with an accuracy of up to 35 μm. Image segmentation created 3D models and for each bone the corresponding CT and MRI models were aligned with the SL model using the iterative closest point (ICP) algorithm and the differences between models calculated. Hausdorff distance was also determined. Compared to SL scans, the CT models had an ICP error of 0.82 ± 0.2 and 0.85 ± 0.2 mm for the tibia and femur respectively, whilst the MRI models had an error of 0.97 ± 0.2 and 0.98 ± 0.18 mm. A one-way analysis of variance found no significant difference in the Hausdorff distances or ICP values between the three scanning methods (p > .05). The black bone MRI method can provide accurate geometric measures of the femur and tibia that are comparable to those achieved with CT. Given the lack of ionizing radiation this has significant benefits for clinical populations and also potential for application in research settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.