Summary. Prediction of the rate of penetration (ROP) is an important task in drilling economical assessments of mining and construction projects. In this paper, the predictability of the ROP for percussive drills was investigated using the artificial neural networks (ANNs) and the linear multivariate regression analysis. The "power pack" frequency, the revolution per minute (RPM), the feed pressure, the hammer frequency, and the impact energy were considered as input parameters. The results indicate that the ANN with the regression model predicts the ROP under different conditions with high accuracy. It also demonstrates that the ANN approach is a beneficial tool that can reduce cost, time and enhance structure reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.