This study explores a new perspective on triboelectrification that could potentially lead to the development of a non-destructive approach for the rapid characterization of powders. Sieved yellow pea powders at various particle sizes and protein contents were used as a model system for the experimental charge measurements of the triboelectrified powders. A tribocharging model based on the prominent condenser model was combined with a Eulerian–Lagrangian computational fluid dynamics (CFD) model to simulate particle tribocharging in particle-laden flows. Further, an artificial neural network model was developed to predict particle–wall collision numbers based on a database obtained through CFD simulations. The tribocharging and CFD models were coupled with the experimental tribocharging data to estimate the contact potential difference of powders, which is a function of contact surfaces’ work functions and depends on the chemical composition of powders. The experimentally measured charge-to-mass ratios were linearly related to the calculated contact potential differences for samples with different protein contents, indicating a potential approach for the chemical characterization of powders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.