This article concerns with incorporating wavelet bases into existing streamline upwind Petrov‐Galerkin (SUPG) methods for the numerical solution of nonlinear hyperbolic conservation laws which are known to develop shock solutions. Here, we utilize an SUPG formulation using continuous Galerkin in space and discontinuous Galerkin in time. The main motivation for such a combination is that these methods have good stability properties thanks to adding diffusion in the direction of streamlines. But they are more expensive than explicit semidiscrete methods as they have to use space‐time formulations. Using wavelet bases we maintain the stability properties of SUPG methods while we reduce the cost of these methods significantly through natural adaptivity of wavelet expansions. In addition, wavelet bases have a hierarchical structure. We use this property to numerically investigate the hierarchical addition of an artificial diffusion for further stabilization in spirit of spectral diffusion. Furthermore, we add the hierarchical diffusion only in the vicinity of discontinuities using the feature of wavelet bases in detection of location of discontinuities. Also, we again use the last feature of the wavelet bases to perform a postprocessing using a denosing technique based on a minimization formulation to reduce Gibbs oscillations near discontinuities while keeping other regions intact. Finally, we show the performance of the proposed combination through some numerical examples including Burgers’, transport, and wave equations as well as systems of shallow water equations.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 2062–2089, 2017
Purpose This paper aims to propose an adaptive method for the numerical solution of the shallow water equations (SWEs). The authors provide an arbitrary high-order method using high-order spline wavelets. Furthermore, they use a non-linear shock capturing (SC) diffusion which removes the necessity of post-processing. Design/methodology/approach The authors use a space-time weak formulation of SWEs which exploits continuous Galerkin (cG) in space and discontinuous Galerkin (dG) in time allowing time stepping, also known as cGdG. Such formulations along with SC term have recently been proved to ensure the stability of fully discrete schemes without scarifying the accuracy. However, the resulting scheme is expensive in terms of number of degrees of freedom (DoFs). By using natural adaptivity of wavelet expansions, the authors devise an adaptive algorithm to reduce the number of DoFs. Findings The proposed algorithm uses DoFs in a dynamic way to capture the shocks in all time steps while keeping the representation of approximate solution sparse. The performance of the proposed scheme is shown through some numerical examples. Originality/value An incorporation of wavelets for adaptivity in space-time weak formulations applied for SWEs is proposed.
In this work, we investigate the capabilities of deep neural networks for solving hyperbolic conservation laws with non-convex flux functions. The behaviour of solutions to these problems depends on the underlying small-scale regularization. In many applications concerning phase transition phenomena, the regularization terms consist of diffusion and dispersion which are kept in balance in the limit. This may lead to the development of both classical and non-classical (or undercompressive) shock waves at the same time which makes the development of approximation schemes that converge towards the appropriate weak solution of these problems challenging. Here, we consider a scalar conservation law with cubic flux function as a toy model and present preliminary results of an ongoing work to study the capabilities of a deep learning algorithm called PINNs proposed in [1] for solving this problem. It consists of a feed-forward network with a hyperbolic tangent activation function along with an additional layer to enforce the differential equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.