Polyvinyl alcohol (PVA) is a hydrophilic polymer with various characteristics desired for biomedical applications and can be transformed into a solid hydrogel by physical crosslinking, using a low-temperature thermal cycling process. As with most polymeric materials, the mechanical properties of the resultant PVA are isotropic, as oppose to most soft tissues, which are anisotropic. The objective of this research is to develop a PVA-based hydrogel that not only mimics the nonlinear mechanical properties displayed by cardiovascular tissues, but also their anisotropic behavior. By applying a controlled strain to the PVA samples, while undergoing low-temperature thermal cycling, we were able to create oriented mechanical properties in PVA hydrogels. The oriented stress-strain properties of porcine aorta were matched simultaneously by a PVA hydrogel prepared (10% PVA, cycle 3, 75% initial strain). This novel technique allows the controlled introduction of anisotropy to PVA hydrogel, and gives a broad range of control of its mechanical properties, for specific medical device applications.
In this study, a polymeric aortic heart valve made of poly(vinyl alcohol) (PVA)-bacterial cellulose (BC) nanocomposite is simulated and designed using a hyperelastic non-linear anisotropic material model. A novel nanocomposite biomaterial combination of 15 wt % PVA and 0.5 wt % BC is developed in this study. The mechanical properties of the synthesized PVA-BC are similar to those of the porcine heart valve in both the principal directions. To design the geometry of the leaflets an advance surfacing technique is employed. A Galerkin-based non-linear finite element method is applied to analyse the mechanical behaviour of the leaflet in the closing and opening phases under physiological conditions. The model used in this study can be implemented in mechanical models for any soft tissues such as articular cartilage, tendon, and ligament.
This review provides a comprehensive assessment on polymer blends and nanocomposite systems for articular cartilage tissue engineering applications. Classification of various types of blends including natural/natural, synthetic/synthetic systems, their combination and nanocomposite biomaterials are studied. Additionally, an inclusive study on their characteristics, cell responses ability to mimic tissue and regenerate damaged articular cartilage with respect to have functionality and composition needed for native tissue, are also provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.