Barberry is known as a medicinal and ornamental plant throughout the world. Edible fruit from the barberry is used in medicine to treat liver, neck and stomach cancer, for purification of the blood and for breath freshness. In order to assess and select a suitable form of the drying curve, six different semitheoretical and/or empirical models were fitted to the experimental data. Experiments were performed at air temperatures of 50, 60 and 70C. At each temperature, three air velocity values were selected: 0.5, 1 and 2 m/s. Consequently, of all the drying models, the Page model was selected as the best mathematical model according to R2, χ2 and root mean square error parameters. Constants related to the Page model are reported and regressed against air condition using multiple regression analysis.
PRACTICAL APPLICATION
All commercial flow dryers are designed on thin‐layer drying principles. Thin‐layer drying means to dry as one layer of sample particles or slices. In this paper we present a mathematical model for thin‐layer drying of barberry fruits (moisture ratio against time). Definition of moisture ratio as a function of time and drying condition has many advantages such as (1) easy control of dryer system, (2) lower energy consumption, (3) less thermal damage to the products and (4) lower investment. It is believed that the present study should be useful to people seeking (1) to optimize the design of drying systems and their components, and (2) to identify appropriate applications and optimal configurations for drying systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.