<p class="BodyAbstract">Biodiesel is one of the alternative fuels produced from the transesterification reaction between triglycerides and alcohols with glycerol by-products. So far, the resulting crude glycerol has not been maximally utilized because of its low purity. So, it is necessary to purify glycerol before turning it into a more useful compound. The purified glycerol can be reacted with acetic acid within esterification reaction (acetylation process) using an acid catalyst to produce glycerol triacetate (triacetin). One of the uses of triacetin as an additive in gasoline and biodiesel. The purpose of this study is to utilize glycerol from by-products from biodiesel production to bio-additive materials that can improve fuel quality and are environmentally friendly. The method used in this study begins with the purification of crude glycerol, modification of zeolite catalyst with impregnated of nickel metal followed by an acetylation reaction which held on temperature of 100°C for 60 min. The experimental results are analyzed using base titration to determine the remaining unreacted acids and are applied as bio-additives by adding them to commercial fuels and measured the increasing octane numbers. The result shows that the reaction conversion increases with increasing mole ratio of reactants and catalysts with the best results in the mole ratio of acetic acid and glycerol is 9:1 and catalyst 5% by weight of acetic acid with a conversion of 66.02%. As bio-additives the reaction product could increase the octane number of commercial fuel by 6.5 up to 8.5%.</p><p> </p>Keywords: glycerol, acetylation reaction, mofified zeolite, bio-additive
Burning characteristics of coconut oil vapor-air premixed combustion has been studied experimentally. This study was conducted using Hele-Shaw cell of 50cm x 20cm x 1cm. Coconut oil in this study has the composisiton of 12% glycerol and 88% fatty acid (consisting of 18.77% caprylic acid, 15.15% capric acid, 41.78%
BOD, COD, phenol and ammonia-free in the effluent of hospitals wastewater often exceed the quality standards. This was due to less optimal biological processes to degrade the pollutants. So we need an efforts to find optimal process conditions through the engineering process and the factors that affect the biodegradation of pollutants. On the other hand, AF2B reactor containing biofilter with bee nest shaped has a large specific surface area so as to maximize the biodegradation process of pollutants by microorganisms. While bacteria consortium consisting of several types of bacteria have a greater capacity than a single bacterium in the degradation of pollutants. The research aims to determine the effect of starter volume and air flowrate to decrease the concentration of pollutants (BOD, COD, phenol and ammonia-free) in AF2B reactor batch using a bacterial consortium. The research was conducted in three phase which are the making of growth curve, acclimatization and biodegradation of pollutants in an AF2B reactor batch using a bacterial consortium. The experiment variables are the starter volume (85%, 75%, 65% in volume), and the air flowrate (2.5; 5; and 7.5 liter/min). Materials used are hospital waste water and bacterial consortium. The experiment begins with setting up the AF2B reactor containing biofilter with bee nest shaped and then filled it with a starter from the acclimatization process on a given volume and followed by supplies of air at a certain flowrate. Then hospital waste water and 5% of nutrients were added till reach 10 liters of total volume in reactor. Samples were taken every 30 minutes for up to 360 minutes of biodegradation process. The samples were then analyzed its pollutants concentration (BOD, COD, phenol and ammonia-free). The BOD concentration was analyzed using Winkler bottles method, COD using open reflux method, while phenol and ammonia-free using UV-Vis spectrophotometry method. The results showed that the starter volume and air flowrate affect the decrease of pollutants concentration till reach quality standard, which at starter volume of 85%, air flowrate of 7.5 liter/min and biodegradation time of 360 min can reduce the BOD, COD, phenol, and ammonia-free to 92%, 86%, 88% and 76% respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.