The present study considers both the hydrodynamic and thermal characteristics of combined electroosmotic and pressure driven flow in a microannulus. Analytical solutions are presented using the Debye–Hückel linearization along with the uniform Joule heating and negligible viscous dissipation assumptions, whereas exact results are achieved numerically. Here, the range of validity for the Debye–Hückel linearization is found to be about two times of that for a parallel plate microchannel. Accordingly, this linearization may successfully be used to evaluate the potential and velocity distributions up to the zeta potentials of 100 mV, provided that the dimensionless Debye–Hückel parameter is above 10; nevertheless, the calculated wall shear stresses may be significantly different from the exact ones, even for lower zeta potentials. The viscous heating effects are found to be limited to low values of the dimensionless Debye–Hückel parameter. These effects are pronounced in the presence of a favorable pressure gradient, whereas the opposite is true for an opposed pressure gradient. Furthermore, the influence of increasing the annular geometry parameter, that is the inner to outer radii ratio, generally is to decrease both the inner and outer Nusselt numbers. It is also revealed that the pressure effects vanish at higher values of this parameter.
Electroosmosis is the main mechanism for flow generation in lab-on-a-chip (LOC) devices. The temperature rise due to the Joule heating phenomenon, associated with the electroosmosis, may be detrimental for samples being considered in LOCs. Hence, a complete understanding of the heat transfer physics associated with the electroosmotic flow is of high importance in design and active control of LOCs. The objective of the present study is to estimate the temperature rise and the thermal entry length in electroosmotic flow through rectangular microchannels, having potential applications in LOC devices. Along this line, the power-law rheological model is used to account for non-Newtonian behavior of the common biofluids encountered in these devices. A mixed type of thermal boundary condition is employed at the channel surface, instead of routinely presumed constant wall heat flux or constant wall temperature conditions. A finite difference-based numerical method is employed for solving the governing equations in dimensionless form. An approximate solution, based on the premise of a uniform temperature field throughout the channel cross section, is also obtained for the bulk mean temperature, which is found to be of high accuracy. This, accompanied by the assessments of the temperature profile, reveals that the temperature variations in the channel cross section are negligible, and as a result, the bulk mean temperature can be used as a very precise estimate of the maximum temperature in an LOC device. Moreover, the evaluation of the entry length shows that a thermally fully developed flow is hardly achieved in practical applications because of small length scales involved. Accordingly, the maximum temperature rise may significantly be smaller than what is calculated based on a thermally fully developed flow assumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.