Land surface temperature (LST) is a basic parameter in energy exchange between the land and the atmosphere, and is frequently used in many sciences such as climatology, hydrology, agriculture, ecology, etc. Time series of satellite LST data have usually deficient, missing, and unacceptable data caused by the presence of clouds in images, the presence of dust in the atmosphere, and sensor failure. In this study, the singular spectrum analysis (SSA) algorithm was used to resolve the problem of missing and outlier data caused by cloud cover. The region studied in the present research included an image frame of the Moderate Resolution Imaging Spectroradiometer (MODIS) with horizontal number 22 and vertical number 05 (h22v05). This image involved a large part of Iran, Turkmenistan, and the Caspian Sea. In this study, MODIS LST products (MOD11A1) were used during 2015 with approximately 1 km × 1 km spatial resolution and day/night LST data (daily temporal resolution). On average, the data have 36.37% gaps in each pixel profile with 730 day/night LST data. The results of the SSA algorithm in the reconstruction of LST images indicated a root mean square error (RMSE) of 2.95 Kelvin (K) between the original and reconstructed LST time series data in the study region. In general, the findings showed that the SSA algorithm using spatio-temporal interpolation can be effectively used to resolve the problem of missing data caused by cloud cover.
Land Surface Temperature (LST) is a basic parameter in energy exchange between the land and atmosphere and is frequently used in many sciences such as climatology, hydrology, agriculture, ecology, etc. LST time series data have usually deficient, missing and unacceptable data caused by the presence of clouds in images, presence of dust in atmosphere and sensor failure. In this study, Singular Spectrum Analysis (SSA) algorithm was used to resolve the problem of missing and outlier data caused by cloud cover. The region studied in the present research included an image frame of MODIS with horizontal number 22 and vertical number 05 (h22v05). This image involved a large part of Iran and Turkmenistan and Caspian Sea. In this study, MODIS LST sensor (MOD11A1) was used during 2015 with 1×1 Km spatial resolution and day/night LST data (daily temporal resolution). The results of the data quality showed that cloud cover caused 36.37% of missing data in the studied time series with 730 day/night LST images. Further, the results of SSA algorithm in reconstruction of LST images indicated the Root Mean Square Error (RMSE) of 2.95 K between the original and reconstructed data in LST time series in the study region. In general, the findings showed that SSA algorithm using spatio-temporal interpolation in LST time series can be effectively used to resolve the problem of missing data caused by cloud cover.
Monitoring vegetation changes over time is very important in dry areas such as Iran, given its pronounced drought-prone agricultural system. Vegetation indices derived from remotely sensed satellite imageries are successfully used to monitor vegetation changes at various scales. Atmospheric dust as well as airborne particles, particularly gases and clouds, significantly affect the reflection of energy from the surface, especially in visible, short and infrared wavelengths. This results in imageries with missing data (gaps) and outliers while vegetation change analysis requires integrated and complete time series data. This study investigated the performance of HANTS (Harmonic ANalysis of Time Series) algorithm and (M)-SSA ((Multi-channel) Singular Spectrum Analysis) algorithm in reconstruction of wide-gap of missing data. The time series of Normalized Difference Vegetation Index (NDVI) retrieved from Landsat TM in combination with 250m MODIS NDVI time image products are used to simulate and find periodic components of the NDVI time series from 1986 to 2000 and from 2000 to 2015, respectively. This paper presents the evaluation of the performance of gap filling capability of HANTS and M-SSA by filling artificially created gaps in data using Landsat and MODIS data. The results showed that the RMSEs (Root Mean Square Errors) between the original and reconstructed data in HANTS and M-SSA algorithms were 0.027 and 0.023 NDVI value, respectively. Further, RMSEs among 15 NDVI images extracted from the time series artificially and reconstructed by HANTS and M-SSA algorithms were 0.030 and 0.025 NDVI value, respectively. RMSEs of the original and reconstructed data in HANTS and M-SSA algorithms were 0.10 and 0.04 for time series 6, respectively. The findings of this study present a favorable option for solving the missing data challenge in NDVI time series.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.