The objective of this work is to study the effect of using nanofluids as coolant on divertor system of fusion reactors which is known to be subjected to high heat loads coming from the plasma. Turbulent force convective heat transfer of water-based Al 2 O 3 nanofluid flowing through the CuCrZr cooling tube of a small scale of mock up made of five tungsten monoblocks has been numerically investigated using single phase model. Computational fluid dynamic approach has been applied by using CFD software FLUENT 6.3.26. The computed results have been validated by traditional corrections expression reported by previous works. The dependence of temperature contours and profiles on volume fraction of nanofluids for different walls of this monoblock has been studied and compared with pure water. The maximum allowed temperature of the candidate material under unusual situation of a fusion reactor has been considered and compared with the maximum temperatures resulted from the CFD results. The effects of various nanofluid concentrations and Reynolds numbers on average Nusselt number have been also investigated. The results show a significant improvement in heat removal from the divertor under the cooling of alumina/water nanofluid with respect to pure water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.