Ru(II)-diimine complexes covalently attached near the heme active site of P450 BM3 enzymes have been used to rapidly inject electrons and drive selective C-H functionalization upon visible light irradiation. Herein, we have generated a series of hybrid P450 BM3 enzymes containing a photosensitizer of general formula [Ru(4,4′-X2bpy)2(PhenA)]2+ where X = Cl, H, tBu, Me OPhe, OMe, or NMe2, bpy = 2, 2′-bipyridine, and PhenA = 5-acetamido-1,10-phenanthroline. We then probed the effect of electron-withdrawing and -donating groups at the para position of the 4,4′-X2bpy ligands on the corresponding hybrid enzymes photocatalytic activity. A three-fold improvement in initial reaction rate was noted when varying the substituent from Cl to tBu however, the reaction rates decrease thereafter with the more electron donating groups. In order to rationalize those effects, we investigated the variation of the substitutent on the photophysical properties of the corresponding [Ru(4,4′-X2bpy)2(bpy)]2+ model complexes. Several linear correlations were established between the E(III/II) potential, the MLCT emission and absorption energies as well as the logarithm of the luminescence quenching rate vs. the summative Brown-Okamoto parameter (Σσp+). Moreover, a downward curved Hammett plot is observed with the hybrid enzyme initial reaction rate revealing mechanistic details about the overall light-driven enzymatic process.
This review describes the recent advances utilizing photosensitizers and visible light to harness the synthetic potential of P450 enzymes. The structures of the photosensitizers investigated to date are first presented along with their photophysical and redox properties. Functional photosensitizers range from organic and inorganic complexes to nanomaterials as well as the biological photosystem I complex. The focus is then on the three distinct approaches that have emerged for the activation of P450 enzymes. The first approach utilizes the in situ generation of reactive oxygen species entering the P450 mechanism via the peroxide shunt pathway. The other two approaches are sustained by electron injections into catalytically competent heme domains either facilitated by redox partners or through direct heme domain reduction. Achievements as well as pitfalls of each approach are briefly summarized. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.