Layer-by-layer self-assembled TiO2 hierarchical nanosheets with exposed {001} facets have been successfully fabricated via a simple one-step solvothermal reaction. The anatase TiO2 layer-by-layer hierarchical nanosheets (TiO2 LHNs) exhibit favorable light scattering effect and large surface area, owing to their layer-by-layer hierarchical structure. When applied to the dye-sensitized solar cells (DSSCs), the layer-by-layer hierarchical structure with exposed {001} facet could effectively enhance light harvesting and dye adsorption, followed by increasing the photocurrent of DSSCs. As a result, the photoelectric conversion efficiency (η) of 7.70% has been achieved for the DSSCs using TiO2 LHNs as the bifunctional layer, indicating 21% improvement compared to the pure Degussa P25 (6.37%) as photoanode. Such enhancement can be mainly ascribed to the better light scattering capability of TiO2 LHNs, higher dye adsorption on TiO2 LHN {001} facets, and longer lifetime of the injected electrons in TiO2 LHNs compared to P25, which are examined by UV-vis spectrophotometry and electrochemical impedance spectroscopy under the same conditions. These remarkable properties of TiO2 LHNs make it a promising candidate as a bifunctional scattering material for DSSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.