Second-order cone programming problems are a tractable subclass of convex optimization problems that can be solved using polynomial algorithms. In the last decade, stochastic second-order cone programming problems have been studied, and efficient algorithms for solving them have been developed. The mixed-integer version of these problems is a new class of interest to the optimization community and practitioners, in which certain variables are required to be integers. In this paper, we describe five applications that lead to stochastic mixedinteger second-order cone programming problems. Additionally, we present solution algorithms for solving stochastic mixed-integer second-order cone programming using cuts and relaxations by combining existing algorithms for stochastic second-order cone programming with extensions of mixed-integer second-order cone programming. The applications, which are the focus of this paper, include facility location, portfolio optimization, uncapacitated inventory, battery swapping stations, and berth allocation planning. Considering the fact that mixed-integer programs are usually known to be NP-hard, bringing applications to the surface can detect tractable special cases and inspire for further algorithmic improvements in the future. INDEX TERMSSecond-order cone programming, Mixed-integer programming, Stochastic programming, Applications, Algorithms ACRONYMS CVaR Conditional value-at-risk. DMISOCP Deterministic mixed-integer second-order cone programming. FEU 40-foot equivalent unit. FLP Facility location problem. SMBSOCP Stochastic mixed-binary second-order cone programming. SMILP Stochastic mixed-integer linear programming. SMISOCP Stochastic mixed-integer second-order cone programming. SSOCP Stochastic second-order cone programming. TEU 20-foot equivalent unit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.