In this paper, we develop the notion of c-almost periodicity for functions defined on vertical strips in the complex plane. As a generalization of Bohr’s concept of almost periodicity, we study the main properties of this class of functions which was recently introduced for the case of one real variable. In fact, we extend some important results of this theory which were already demonstrated for some particular cases. In particular, given a non-null complex number c, we prove that the family of vertical translates of a prefixed c-almost periodic function defined in a vertical strip U is relatively compact on any vertical substrip of U, which leads to proving that every c-almost periodic function is also almost periodic and, in fact, $$c^m$$
c
m
-almost periodic for each integer number m.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.