The presence of microcalcifications (MCs) in X-ray mammograms provides an important early sign of women breast cancer. However, their detection still remains very complex due to the diversity in shape, size, their distributions and to the low contrast between the cancerous areas and surrounding bright structures in mammograms. This paper presents an effective approach based on mathematical morphology for detection of MCs in digitised mammograms. The developed approach performs an initial step in order to extract the breast area and removing unwanted artefacts out of the mammogram. Subsequently, an enhancement process is applied to improve appearance and increase the contrast of images and to eliminate noise. Once the breast region has been found, a segmentation phase through morphological watershed is performed in order to detect MCs. The performance of our approach is evaluated using a total of 22 mammograms extracted from the MIAS mammographic database, showing the presence of MCs. The obtained results were compared with manual detection, marked by an expert mammographic radiologist. These results show that the system is very effective, especially in terms of sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.