The human tumor necrosis factor alpha (TNF-␣) gene is rapidly activated in response to multiple signals of stress and inflammation. We have identified transcription factors present in the TNF-␣ enhancer complex in vivo following ionophore stimulation (ATF-2/Jun and NFAT) and virus infection (ATF-2/Jun, NFAT, and Sp1), demonstrating a novel role for NFAT and Sp1 in virus induction of gene expression. We show that virus infection results in calcium flux and calcineurin-dependent NFAT dephosphorylation; however, relatively lower levels of NFAT are present in the nucleus following virus infection as compared to ionophore stimulation. Strikingly, Sp1 functionally synergizes with NFAT and ATF-2/c-jun in the activation of TNF-␣ gene transcription and selectively associates with the TNF-␣ promoter upon virus infection but not upon ionophore stimulation in vivo. We conclude that the specificity of TNF-␣ transcriptional activation is achieved through the assembly of stimulus-specific enhancer complexes and through synergistic interactions among the distinct activators within these enhancer complexes.
DNA microarrays represent a technological intersection between biology and computers that enables gene expression analysis in human tissues on a genome-wide scale. This application can be expected to prove extremely valuable for the study of the genetic basis of complex diseases. Despite the enormous promise of this revolutionary technology, there are several issues and possible pitfalls that may undermine the authority of the microarray platform. We discuss some of the conceptual, practical, statistical, and logistical issues surrounding the use of microarrays for gene expression profiling. These issues include the imprecise definition of normal in expression comparisons; the cellular and subcellular heterogeneity of the tissues being studied; the difficulty in establishing the statistically valid comparability of arrays; the logistical logjam in analysis, presentation, and archiving of the vast quantities of data generated; and the need for confirmational studies that address the functional relevance of findings. Although several complicated issues must be resolved, the potential payoff remains large.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.