Introduction This study implemented MendelScan, a primary care rare disease case-finding tool, into a UK National Health Service population. Rare disease diagnosis is challenging due to disease complexity and low physician awareness. The 2021 UK Rare Diseases Framework highlights as a key priority the need for faster diagnosis to improve clinical outcomes. Methods and results A UK primary care locality with 68,705 patients was examined. MendelScan encodes diagnostic/screening criteria for multiple rare diseases, mapping clinical terms to appropriate SNOMED CT codes (UK primary care standardised clinical terminology) to create digital algorithms. These algorithms were applied to a pseudo-anonymised structured data extract of the electronic health records (EHR) in this locality to "flag" at-risk patients who may require further evaluation. All flagged patients then underwent internal clinical review (a doctor reviewing each EHR flagged by the algorithm, removing all cases with a clear diagnosis/diagnoses that explains the clinical features that led to the patient being flagged); for those that passed this review, a report was returned to their GP. 55 of 76 disease criteria flagged at least one patient. 227 (0.33%) of the total 68,705 of EHR were flagged; 18 EHR were already diagnosed with the disease (the highlighted EHR had a diagnostic code for the same RD it was screened for, e.g. Behcet’s disease algorithm identifying an EHR with a SNOMED CT code Behcet's disease). 75/227 (33%) EHR passed our internal review. Thirty-six reports were returned to the GP. Feedback was available for 28/36 of the reports sent. GP categorised nine reports as "Reasonable possible diagnosis" (advance for investigation), six reports as "diagnosis has already been excluded", ten reports as "patient has a clear alternative aetiology", and three reports as "Other" (patient left study locality, unable to re-identify accurately). All the 9 cases considered as "reasonable possible diagnosis" had further evaluation. Conclusions This pilot demonstrates that implementing such a tool is feasible at a population level. The case-finding tool identified credible cases which were subsequently referred for further investigation. Future work includes performance-based validation studies of diagnostic algorithms and the scalability of the tool.
Introduction:This study implemented MendelScan, a primary care rare disease case-finding tool, into a UK NHS population. Rare disease diagnosis is challenging due to disease complexity and low physician awareness. The 2021 UK Rare Diseases Framework highlights a global need for faster diagnosis to improve clinical outcomes as a key priority.Methods & Results:A UK primary care locality with 68,705 patients was examined. MendelScan encodes diagnostic/screening criteria for multiple rare diseases, mapping clinical terms to appropriate SNOMED CT codes (UK primary care standardised clinical terminology) to create digital algorithms. These algorithms were applied to a pseudo-anonymised structured data extract of the electronic health records (EHR) in this locality to "flag" at-risk patients who may require further evaluation. All flagged patients then underwent internal clinical review; for those that passed this review, a report was returned to their GP. 55 of 76 disease criteria flagged at least one patient. 227 (0.33% of the total population) patients were flagged; 18 EHR were already diagnosed with the disease. 75/227 (33%) passed our internal review. Thirty-six reports were returned to the GP. Feedback was available for 28/36 of the reports sent. GP categorised nine reports as "Reasonable possible diagnosis" (advance for investigation), six reports as "diagnosis has already been excluded", ten reports as "patient has a clear alternative aetiology", and three reports as "Other" (patient left study locality, unable to reidentify accurately). All the 9 cases considered as "reasonable possible diagnosis" had a further actionable evaluation.Conclusions:This pilot demonstrates that implementing such a tool is feasible at a population level in an ethical, technical and efficient manner. The case-finding tool identified credible cases which were subsequently referred for further investigation. Future work includes performance-based validation studies of diagnostic algorithms and the scalability of the tool.
Introduction:This study implemented MendelScan, a primary care rare disease case-finding tool, into a UK National Health Service (NHS) population. Rare disease diagnosis is challenging due to disease complexity and low physician awareness. The 2021 UK Rare Diseases Framework highlights a global need for faster diagnosis to improve clinical outcomes as a key priority.Methods & Results:A UK primary care locality with 68,705 patients was examined. MendelScan encodes diagnostic/screening criteria for multiple rare diseases, mapping clinical terms to appropriate SNOMED CT codes (UK primary care standardised clinical terminology) to create digital algorithms. These algorithms were applied to a pseudo-anonymised structured data extract of the electronic health records (EHR) in this locality to "flag" at-risk patients who may require further evaluation. All flagged patients then underwent internal clinical review (a doctor reviewing each EHR flagged by the algorithm, removing all cases with a clear diagnosis that explains the clinical features that led to the patient being flagged); for those that passed this review, a report was returned to their GP. 55 of 76 disease criteria flagged at least one patient. 227 (0.33%) of the total 68,705 of EHR were flagged; 18 EHR were already diagnosed with the disease (The highlighted EHR has a diagnostic code for the same RD it was screened for. e.g Behcet’s disease algorithm identifying an EHR with a SNOMED CT code Behcet's disease). 75/227 (33%) EHR passed our internal review. Thirty-six reports were returned to the GP. Feedback was available for 28/36 of the reports sent. GP categorised nine reports as "Reasonable possible diagnosis" (advance for investigation), six reports as "diagnosis has already been excluded", ten reports as "patient has a clear alternative aetiology", and three reports as "Other" (patient left study locality, unable to re identify accurately). All the 9 cases considered as "reasonable possible diagnosis" had a further actionable evaluation.Conclusions:This pilot demonstrates that implementing such a tool is feasible at a population level. The case-finding tool identified credible cases which were subsequently referred for further investigation. Future work includes performance-based validation studies of diagnostic algorithms and the scalability of the tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.