Order picking is the problem of collecting a set of products in a warehouse in a minimum amount of time. It is currently a major bottleneck in supply-chain because of its cost in time and labor force. This article presents two exact and effective algorithms for this problem. Firstly, a sparse formulation in mixedinteger programming is strengthened by preprocessing and valid inequalities. Secondly, a dynamic programming approach generalizing known algorithms for two or three cross-aisles is proposed and evaluated experimentally. Performances of these algorithms are reported and compared with the Traveling Salesman Problem (TSP) solver Concorde.
We present a variety of approaches for solving the post enrolment-based course timetabling problem, which was proposed as Track 2 of the 2007 International Timetabling Competition. We approach the problem using local search and constraint programming techniques. We show how to take advantage of a list-colouring relaxation of the problem. Our local search approach won Track 2 of the 2007 competition. Our best constraint programming approach uses an original problem decomposition. Incorporating this into a large neighbourhood search scheme seems promising, and provides motivation for studying complete approaches in further detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.