The structural performance of concrete structures subjected to fire is greatly influenced by the heating temperature. Therefore, an accurate estimation of the heating temperature is of vital importance for deriving a reasonable diagnosis and assessment of fire-damaged concrete structures. In current practice, various heating temperature estimation methods are used, however, each of these estimation methods has limitations in accuracy and faces disadvantages that depend on evaluators’ empirical judgments in the process of deriving diagnostic results from measured data. Therefore, in this study, a concrete heating test and a non-destructive test were carried out to estimate the heating temperatures of fire-damaged concrete, and a heating temperature estimation method using an adaptive neuro-fuzzy inference system (ANFIS) algorithm was proposed based on the results. A total of 73 datasets were randomly extracted from a total of 87 concrete heating test results and we used them in the data training process of the ANFIS algorithm; the remaining 14 datasets were used for verification. The proposed ANFIS algorithm model provided an accurate estimation of heating temperature.
A fire that occurs in a reinforced concrete (RC) structure accompanies a heating temperature, and this negatively affects the concrete material properties, such as the compressive strength, the bond between cement paste and aggregate, and the cracking and spalling of concrete. To appropriately measure the reduced structural performance and durability of fire-damaged RC structures, it is important to accurately estimate the heating temperature of the structure. However, studies in the literature on RC structures damaged by fire have focused mostly on structural member tests at elevated temperatures to ensure the fire resistance or fire protection material development; studies on estimating the heating temperature are very limited except for the very few existing models. Therefore, in this study, a heating temperature estimation model for a reinforced concrete (RC) structure damaged by fire was developed using a statistical Bayesian parameter estimation approach. For the model development, a total of 77 concrete test specimens were utilized; based on them, a statistically highly accurate model has been developed. The usage of the proposed method in the framework of the 500 °C isotherm method in Eurocode 2 has been illustrated through an RC column resistance estimation application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.