The advent of molecular data has transformed the science of organizing and studying life on Earth. Genetics-based evidence provides fundamental insights into the diversity, ecology, and origins of many biological systems, including the mutualisms between metazoan hosts and their micro-algal partners. A well-known example is the dinoflagellate endosymbionts ("zooxanthellae") that power the growth of stony corals and coral reef ecosystems. Once assumed to encompass a single panmictic species, genetic evidence has revealed a divergent and rich diversity within the zooxanthella genus Symbiodinium. Despite decades of reporting on the significance of this diversity, the formal systematics of these eukaryotic microbes have not kept pace, and a major revision is long overdue. With the consideration of molecular, morphological, physiological, and ecological data, we propose that evolutionarily divergent Symbiodinium "clades" are equivalent to genera in the family Symbiodiniaceae, and we provide formal descriptions for seven of them. Additionally, we recalibrate the molecular clock for the group and amend the date for the earliest diversification of this family to the middle of the Mesozoic Era (∼160 mya). This timing corresponds with the adaptive radiation of analogs to modern shallow-water stony corals during the Jurassic Period and connects the rise of these symbiotic dinoflagellates with the emergence and evolutionary success of reef-building corals. This improved framework acknowledges the Symbiodiniaceae's long evolutionary history while filling a pronounced taxonomic gap. Its adoption will facilitate scientific dialog and future research on the physiology, ecology, and evolution of these important micro-algae.
Planktonic mixotrophic and heterotrophic dinoflagellates are ubiquitous protists and often abundant in marine environments. Recently many phototrophic dinoflagellate species have been revealed to be mixotrophic organisms and also it is suggested that most dinoflagellates may be mixotrophic or heterotrophic protists. The mixotrophic and heterotrophic dinoflagellates are able to feed on diverse prey items including bacteria, picoeukaryotes, nanoflagellates, diatoms, other dinoflagellates, heterotrophic protists, and metazoans due to their diverse feeding mechanisms. In turn they are ingested by many kinds of predators. Thus, the roles of the dinoflagellates in marine planktonic food webs are very diverse. The present paper reviewed the kind of prey which mixotrophic and heterotrophic dinoflagellates are able to feed on, feeding mechanisms, growth and ingestion rates of dinoflagellates, grazing impact by dinoflagellate predators on natural prey populations, predators on dinoflagellates, and red tides dominated by dinoflagellates. Based on this information, we suggested a new marine planktonic food web focusing on mixotrophic and heterotrophic dinoflagellates and provided an insight on the roles of dinoflagellates in the food web.
Arranging organisms into functional groups aids ecological research by grouping organisms (irrespective of phylogenetic origin) that interact with environmental factors in similar ways. Planktonic protists traditionally have been split between photoautotrophic "phytoplankton" and phagotrophic "microzooplankton". However, there is a growing recognition of the importance of mixotrophy in euphotic aquatic systems, where many protists often combine photoautotrophic and phagotrophic modes of nutrition. Such organisms do not align with the traditional dichotomy of phytoplankton and microzooplankton. To reflect this understanding, we propose a new functional grouping of planktonic protists in an eco-physiological context: (i) phagoheterotrophs lacking phototrophic capacity, (ii) photoautotrophs lacking phagotrophic capacity, (iii) constitutive mixotrophs (CMs) as phagotrophs with an inherent capacity for phototrophy, and (iv) non-constitutive mixotrophs (NCMs) that acquire their phototrophic capacity by ingesting specific (SNCM) or general non-specific (GNCM) prey. For the first time, we incorporate these functional groups within a foodweb structure and show, using model outputs, that there is scope for significant changes in trophic dynamics depending on the protist functional type description. Accordingly, to better reflect the role of mixotrophy, we recommend that as important tools for explanatory and predictive research, aquatic food-web and biogeochemical models need to redefine the protist groups within their frameworks.
We report here for the first time that 5 red-tide dinoflagellates (Gymnodinium catenatum, G. impudicum, Lingulodinium polyedrum, Prorocentrum donghaiense, and P. triestinum) which had been previously thought to be exclusively autotrophic dinoflagellates are mixotrophic species. We investigated the feeding behaviors, the kinds of prey species that 11 mixotrophic red-tide dinoflagellates (Akashiwo sanguinea, Alexandrium tamarense, G. catenatum, G. impudicum, Heterocapsa triquetra, L. polyedrum, P. donghaiense, P. micans, P. minimum, P. triestinum, and Scrippsiella trochoidea) fed on, and the effects of the prey concentration on the growth and ingestion rates of P. donghaiense, H. triquetra, P. micans, and L. polyedrum when feeding on algal prey. We have also calculated grazing coefficients by combining field data on abundances of P. donghaiense, H. triquetra, P. micans, and L. polyedrum and co-occurring prey species. All algal predators tested in the present study ingested small phytoplankton species that had equivalent spherical diameters (ESDs) < 12 μm. A. sanguinea and L. polyedrum were able to ingest large phytoplankton species such as H. triquetra, S. trochoidea, and A. tamarense. Prorocentrum spp. fed on prey by engulfing the prey cell through body sutures, while S. trochoidea engulfed prey through the apical horn as well as through the sulcus. Specific growth rates of P. donghaiense, H. triquetra, and P. micans on a cryptophyte and L. polyedrum on P. minimum and S. trochoidea increased with increasing mean prey concentration, with saturation occurring at mean prey concentrations of 110 to 480 ng C ml , respectively. Maximum ingestion rates of P. donghaiense, H. triquetra, and P. micans on the cryptophyte were much lower than those of L. polyedrum on S. trochoidea and P. minimum. The calculated grazing coefficients of P. donghaiense, H. triquetra, and P. micans on the cryptophyte were up to 2.67, 0.091, and 0.041 h
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.