This perspective presents an overview of single-molecule surface-enhanced Raman scattering (sm-SERS). Our overview is organized as a brief theoretical background, discussion of the factors that enhance SERS, various experimental preparations for inserting a single molecule in a hot spot, recent sm-SERS experiments, and a perspective. Although, there have been numerous review papers on sm-SERS, we mainly concentrated on the logical development of sm-SERS on the basis of the fundamental concepts and their physical significance, so that readers outside this field can understand the motivation and the underlying physics when describing current sm-SERS measurements. Indeed, understanding such current sm-SERS experiments conducted by representative groups would be very helpful for readers to answer for themselves the fundamental and practical questions surrounding sm-SERS: (1) what information can sm-SERS provide? (2) Which factors based on the SERS mechanism should be considered to significantly amplify the SERS signal? (3) What kinds of related microscopy techniques could be combined with sm-SERS to attain more meaningful results? (4) Which statistical approaches can be used and how they can be applied to properly analyze sm-SERS data? We hope that this review article can help readers answer these questions.
We investigated the correlations among the structure, Rayleigh scattering, and single-molecule surface-enhanced Raman scattering (SERS) of DNA-tethered Au-Ag core-shell nanoparticles, especially in dimer and trimer forms. For the optimal correlation measurements, accurate information on the position of the nanoparticle is crucial for locating the nanoparticle at the center of the excitation source for the optical measurements. To achieve this, we developed a multistep correlation strategy that enables us to unambiguously correlate the AFM images with optical images within a few nanometers. We also newly defined the correlation accuracy in this paper as a useful concept for the correlation measurements. With this reliable correlation accuracy, we performed various statistical analyses to thoroughly elucidate the relationships between particle structure, Rayleigh scattering and SERS in terms of the incident polarization and scattering intensity ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.