It is well known that Norovirus (NoV) and Sapovirus (SaV) identified in humans and pigs have heterogeneous genome sequences. In this study, a total of three strains of NoV and 37 strains of SaV were detected in 567 porcine fecal samples by RT-PCR, corresponding detection rates of 0.5 and 6.5%, respectively. Phylogenetic analyses were conducted using amino acid sequences of the partial RNA-dependent RNA polymerase (RdRp) and complete capsid proteins of both viruses to determine their genogroups. Analysis with the RdRp sequences indicated that all three NoV strains HW41, DG32, and DO35 detected in this study were classified into genogroup II (GII). A further analysis with the complete capsid sequence demonstrated that the DO35 strain belonged to subgenotype b in GII-21 (GII-21b) along with the SW918 strain. A total of 26 strains out of 27 strains that were selected from the 37 porcine SaVs were classified into genogroup III when they were analyzed with the RdRp sequences. The remaining strain (DO19) was not clustered with any of the previously classified SaV strains, thereby suggesting the advent of a new genogroup virus. Additional analyses with the amino acid sequence of the capsid and the nucleotide sequence of the RdRp and capsid junction region supported the notion that the DO19 strain belonged to a novel genogroup of SaV. To the best of our knowledge, this is the first report to describe a novel porcine SaV belonging to an unknown genogroup in Korea.
Porcine reproductive and respiratory syndrome virus (PRRSV) induces reproductive failure in sows and respiratory problems in pigs of all ages. Live attenuated and inactivated vaccines are used on swine farms to control PRRSV. However, their protective efficacy against field strains of PRRSV remains questionable. New vaccines have been developed to improve the efficacy of these traditional vaccines. In this study, virus-like particles (VLPs) composed of the GP5 and M proteins of PRRSV were developed, and the capacity of the VLPs to elicit antigen-specific immunity was evaluated. Serum antibody titers and production of cytokines were measured in BALB/C mice immunized intramuscularly three times with different doses (0.5, 1.0, 2.0, and 4.0 μ) of the VLP vaccine. A commercial vaccine consisting of inactivated PRRSV and phosphate-buffered saline (PBS) were used as positive and negative controls, respectively. IgG titers to GP5 were significantly higher in all groups of mice vaccinated with the VLPs than in control mice. Neutralizing antibodies were only detected in mice vaccinated with 2.0 and 4.0 μ of the VLPs. Cytokine levels were determined in cell culture supernatants after in vitro stimulation of splenocytes with the VLPs for 3 days. Mice immunized with 4.0 μ of the VLPs produced a significantly higher amount of interferon-gamma (IFN-γ) than mice immunized with the commercial inactivated PRRSV vaccine and PBS. In contrast, immunization with the commercial vaccine induced higher production of IL-4 and IL-10 in mice than mice vaccinated with VLPs. These data together demonstrate the capacity of VLPs to induce both neutralizing antibodies and IFN-γ in immunized mice. The VLP vaccine developed in this study could serve as a platform for the generation of improved VLP vaccines to control PRRSV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.