The microstructures and mechanical properties of cobalt-chromium (Co-Cr) alloys produced by three CAD/CAM-based processing techniques were investigated in comparison with those produced by the traditional casting technique. Four groups of disc- (microstructures) or dumbbell- (mechanical properties) specimens made of Co-Cr alloys were prepared using casting (CS), milling (ML), selective laser melting (SLM), and milling/post-sintering (ML/PS). For each technique, the corresponding commercial alloy material was used. The microstructures of the specimens were evaluated via X-ray diffractometry, optical and scanning electron microscopy with energy-dispersive X-ray spectroscopy, and electron backscattered diffraction pattern analysis. The mechanical properties were evaluated using a tensile test according to ISO 22674 (n = 6). The microstructure of the alloys was strongly influenced by the manufacturing processes. Overall, the SLM group showed superior mechanical properties, the ML/PS group being nearly comparable. The mechanical properties of the ML group were inferior to those of the CS group. The microstructures and mechanical properties of Co-Cr alloys were greatly dependent on the manufacturing technique as well as the chemical composition. The SLM and ML/PS techniques may be considered promising alternatives to the Co-Cr alloy casting process.
Background: Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This disease, which is quickly spreading worldwide, has high potential for infection and causes rapid progression of lung lesions, resulting in a high mortality rate. This study aimed to investigate the effects of SARS-CoV-2 infection on renal function in patients with COVID-19. Methods: From February 21 to April 24, 2020, 66 patients diagnosed with COVID-19 at Chungnam National University Hospital were analyzed; all patients underwent routine urinalysis and were tested for serum creatinine, urine protein to creatinine ratio (PCR), and urine albumin to creatinine ratio (ACR). Results: Acute kidney injury (AKI) occurred in 3 (4.5%) of the 66 patients, and 1 patient with AKI stage 3 underwent hemodialysis. Upon follow-up, all 3 patients recovered normal renal function. Compared with patients with mild COVID-19, AKI (n = 3) occurred in patients with severe COVID-19, of whom both urine PCR and ACR were markedly increased. Conclusion: The incidence of AKI was not high in COVID-19 patients. The lower mortality rate in SARS-CoV-2 infection compared with previous Middle East respiratory syndrome and SARS-CoV infections is thought to be associated with a low incidence of dysfunction in organs other than the lungs.
Hepatic fibrosis is characterized by persistent deposition of extracellular matrix proteins and occurs in chronic liver diseases. The aim of the present study is to investigate whether estrogen deficiency (ED) potentiates hepatic fibrosis in a thioacetamide (TAA)-treated rat model. Fibrosis was induced via intraperitoneal injection (i.p.) of TAA (150 mg/kg/day) for four weeks in ovariectomized (OVX) female, sham-operated female, or male rats. In TAA-treated OVX rats, the activities of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and γ-glutamyl transferase (GGT) were significantly increased compared to those in TAA-treated sham-operated OVX rats or TAA-treated male rats. Furthermore, α-smooth muscle actin (α-SMA) expression was significantly increased compared to that in TAA-treated sham-operated rats. This was accompanied by the appearance of fibrosis biomarkers including vimentin, collagen-I, and hydroxyproline, in the liver of TAA-treated OVX rats. In addition, ED markedly reduced total glutathione (GSH) levels, as well as catalase (CAT) and superoxide dismutase (SOD) activity in TAA-treated OVX rats. In contrast, hepatic malondialdehyde (MDA) levels were elevated in TAA-treated OVX rats. Apoptosis significantly increased in TAA-treated OVX rats, as reflected by elevated p53, Bcl-2, and cleaved caspase 3 levels. Significant increases in interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) concentrations were exhibited in TAA-treated OVX rats, and this further aggravated fibrosis through the transforming growth factor-β (TGF-β)/Smad pathway. Our data suggest that ED potentiates TAA-induced oxidative damage in the liver, suggesting that ED may enhance the severity of hepatic fibrosis in menopausal women.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.