Breast cancer is a clinically heterogeneous disease characterized by distinct molecular aberrations. Understanding the heterogeneity and identifying subgroups of breast cancer are essential to improving diagnoses and predicting therapeutic responses. In this paper, we propose a classification scheme for breast cancer which integrates data on differentially expressed genes (DEGs), copy number variations (CNVs) and microRNAs (miRNAs)-regulated mRNAs. Pathway information based on the estimation of molecular pathway activity is also applied as a postprocessor to optimize the classifier. A total of 250 malignant breast tumors were analyzed by k-means clustering based on the patterns of the expression profiles of 215 intrinsic genes, and the classification performances were compared with existing breast cancer classifiers including the BluePrint and the 625-gene classifier. We show that a classification scheme which incorporates pathway information with various genetic variations achieves better performance than classifiers based on the expression levels of individual genes, and propose that the identified signature serves as a basic tool for identifying rational therapeutic opportunities for breast cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.