Polyaniline (PANI) is a promising conducting polymer for surface modification of TiO2 to achieve extended photoresponse to visible light and increased photocatalytic efficiency. In this study, we report the synthesis of a PANI/TiO2 composite with different weight ratios of PANI, which was subsequently employed for photocatalytic degradation of methylene blue (MB), bisphenol A (BPA), and bacteriophage MS2 under visible-light irradiation. The functional groups, morphology, and light response of the composite were characterized by Fourier-transform infrared spectroscopy, field-emission transmission electron microscopy, and diffuse reflectance UV–visible spectroscopy, respectively. The PANI/TiO2 composite containing 4% by weight ratio of PANI was most suitable for MB degradation, and this photocatalyst was very stable even after repeated use (four cycles). The degradation of BPA and bacteriophage MS2 by PANI/TiO2 composite reached 80% in 360 min and 96.2% in 120 min, respectively, under visible-light irradiation. Therefore, the PANI/TiO2 composite with enhanced visible-light photocatalytic efficiency and stability can be widely used for the degradation of water contaminants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.