When the production run is short and process parameters change frequently, it is difficult to monitor the process using traditional control charts. In such a case, the coefficient of variation (CV) is very useful for monitoring the process variability. The CV control chart, however, is not sensitive at small shifts in the magnitude of CV. This study suggest the CV-GWMA(generally weighted moving average) control chart, combining the GWMA technique, which shows better performance than the EWMA(exponentially weighted moving average) or DEWMA(double exponentially weighted moving average) technique in detecting small shifts of the process. Through a performance evaluation, the proposed control chart showed more excellent performance than the existing CV-EWMA control chart or the CV-DEWMA control chart in detecting small shifts in CV.
When the production run is short and process parameters change frequently, it is difficult to monitor the process using traditional control charts. In such a case, the coefficient of variation (CV) is very useful for monitoring the process variability. The CV control chart, however, is not sensitive at small shift in the magnitude of CV. The CV-EWMA (exponentially weighted moving average) control chart which was developed recently is effective in detecting a small shifts of CV. In this paper, we propose the CV-DEWMA control chart, combining the DEWMA (double exponentially weighted moving average) technique. We show that CV-DEWMA control chart perform better than CV-EWMA control chart in detecting small shifts when sample size n is larger than 5.
A classical Demerit control chart is used to monitor the process through which various types of defects in complex products, such as automobiles, computers, mobile phones, etc. are found in general. As a technique for rapidly detecting small shifts of the process mean in the control chart, the EWMA(exponentially weighted moving average) technique is very effective. This study suggested the Demerit-GWMA control chart, combining the GWMA(generally weighted moving average) technique, which shows better performance than EWMA technique in detecting small shifts of process mean, into the classical Demerit control chart, and evaluated its performance. Through the evaluation of its performance, it was found that the Demerit-GWMA control chart is more sensitive than both the classical Demerit control chart and the Demerit-EWMA control chart in detecting small shifts of process mean.
Complex Products may present more than one type of defects and these defects are not always of equal severity. These defects are classified according to their seriousness and effect on product quality and performance. Demerit systems are very effective systems to monitoring the different types of defects. So, classical demerit control chart used to monitor counts of several different types of defects simultaneously in complex products. Recently, H.W. Kang et al.[7] introduced Demerit-GWMA(generally weighted moving average) and Demerit-EWMA control charts that can detect small shifts of the process mean more sensitively than the classical demerit control charts. In this paper, we present an effective method for process control using the Demerit-GWMA statistics with fast initial response. Moreover, we evaluate exact performance of the Demerit-GWMA control chart with fast initial response(FIR), Demerit-GWMA and Demerit-EWMA according to changing sample size or parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.