The entry of projectiles into water has been of interest to many scientists and engineers, being crucial to a wide range of engineering applications. The water entry problem is a nonlinear and unsteady phenomenon involving complicated multi-phase flow problems and fluid–solid interaction. Many scientists have been studying water entry problems in various conditions through experimental methods and numerical methods. In this paper, three-dimensional numerical simulations of the water entry problem are carried out. The multiphase flow weakly compressible smoothed particle hydrodynamics model is adopted and three-phase interaction is analyzed using pairwise force smoothed particle hydrodynamics. Dynamic boundary condition and rigid body coupling are introduced for interaction between fluid and solid. Spheres with different wetting characteristics entering water at small Reynolds numbers are investigated. Our results show good agreement with the theoretical models from previous studies into the splashing behavior of spheres. The physics of the different splashing behaviors is discussed in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.