Optical diffraction tomography (ODT) enables the three-dimensional (3D) refractive index (RI) reconstruction. However, when the RI difference between a sample and a medium increases, the effects of light scattering become significant, preventing the acquisition of high-quality and accurate RI reconstructions. Herein, we present a method for high-fidelity ODT by introducing non-toxic RI matching media. Optimally reducing the RI contrast enhances the fidelity and accuracy of 3D RI reconstruction, enabling visualization of the morphology and intra-organization of live biological samples without producing toxic effects. We validate our method using various biological organisms, including C. albicans and C. elegans.
Optical diffraction tomography (ODT) enables the three-dimensional (3D) refractive index (RI) reconstruction. However, when the RI difference between a sample and a medium increases, effects of light scattering become significant, preventing the acquisition of high-quality and accurate RI reconstructions. Herein, we present a method for high-fidelity ODT by introducing non-toxic RI matching media. Optimally reducing the RI contrast enhances the fidelity and accuracy of 3D RI reconstruction, enabling visualization of the morphology and intra-organization of live biological samples without producing toxic effects. We validate our method using various biological organisms, including C. albicans and C. elegans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.