Simultaneous imaging of a three-dimensional distribution of point sources is presented. In a two-lens microscope, the point-spreads on the quasi-image plane, which is located between the Fourier and image planes, are spatially distinct, so a set of Fresnel lenslets can perform individual wave-front shaping for axial and lateral rearrangements of the images. In experiments performed with single atoms and holographically programmed lenslets, various three-dimensional arrangements of point sources, including axially aligned atoms, are successfully refocused on the screen, demonstrating the simultaneous and time-efficient detection of the three-dimensional holographic imaging. We expect that non-sequential real-time measurements of three-dimensional point sources shall be in particular useful for quantum correlation measurements and in situ tracking of dynamic particles.
As a scalable and time-efficient means to measure the state of Rydberg-atom quantum simulators, we propose space-variant holographic imaging of three-dimensional single-atom structures. Wave-front shaping in quasi-image planes allows simultaneous and fast quantum-state detections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.