Driven by the demand to accommodate today's growing mobile traffic, 5G is designed to be a key enabler and a leading infrastructure provider in the information and communication technology industry by supporting a variety of forthcoming services with diverse requirements. Considering the ever-increasing complexity of the network, and the emergence of novel use cases such as autonomous cars, industrial automation, virtual reality, e-health, and several intelligent applications, machine learning (ML) is expected to be essential to assist in making the 5G vision conceivable. This paper focuses on the potential solutions for 5G from an ML-perspective. First, we establish the fundamental concepts of supervised, unsupervised, and reinforcement learning, taking a look at what has been done so far in the adoption of ML in the context of mobile and wireless communication, organizing the literature in terms of the types of learning. We then discuss the promising approaches for how ML can contribute to supporting each target 5G network requirement, emphasizing its specific use cases and evaluating the impact and limitations they have on the operation of the network. Lastly, this paper investigates the potential features of Beyond 5G (B5G), providing future research directions for how ML can contribute to realizing B5G. This article is intended to stimulate discussion on the role that ML can play to overcome the limitations for a wide deployment of autonomous 5G/B5G mobile and wireless communications.INDEX TERMS Machine learning, 5G mobile communication, B5G, wireless communication, mobile communication, artificial intelligence. II. THE THREE TYPES OF LEARNING AND ITS APPLICATION IN WIRELESS COMMUNICATIONSThe article is divided according to the level of supervision that the ML procedure requires on the training stage. The major categories discussed in the following sections are supervised, unsupervised, and reinforcement learning
The ongoing development of mobile communication networks to support a wide range of superfast broadband services has led to massive capacity demand. This problem is expected to be a significant concern during the deployment of the 5G wireless networks. The demand for additional spectrum to accommodate mobile services supporting higher data rates and having lower latency requirements, as well as the need to provide ubiquitous connectivity with the advent of the Internet of Things (IoT) sector, is likely to considerably exceed the supply, based on the current policy of exclusive spectrum allocation to mobile cellular systems. Hence, the imminent spectrum shortage has introduced a new impetus to identify practical solutions to make the most efficient use of the scarce licensed bands in a shared manner. Recently, the concept of dynamic spectrum sharing has received considerable attention from regulatory bodies and governments globally, as it could potentially open new opportunities for mobile operators to exploit spectrum bands whenever they are underutilised by their owners, subject to service level agreements. Although various sharing paradigms have been proposed and discussed, the impact and performance gains of different schemes can be scenario-specific and vary depending on the nature of the sharing parties, the level of sharing and spectrum access scheme. In this survey, we describe the main concepts of dynamic spectrum sharing, different sharing scenarios, as well as the major challenges associated with sharing licensed bands. Finally, we conclude this survey paper with open research challenges and suggest some future research directions
This article provides a comprehensive overview of the scientific and technological advances that have the capability to shape future 6G vehicle-to-everything (6G-V2X) communications.
Abstract-In order to satisfy the requirements of future IMTAdvanced mobile systems, the concept of spectrum aggregation is introduced by 3GPP in its new LTE-Advanced (LTE Rel. 10) standards. While spectrum aggregation allows aggregation of carrier components (CCs) dispersed within and across different bands (intra/inter-band) as well as combination of CCs having different bandwidths, spectrum aggregation is expected to provide a powerful boost to the user throughput in LTE-Advanced (LTE-A). However, introduction of spectrum aggregation or carrier aggregation (CA) as referred to in LTE Rel. 10, has required some changes from the baseline LTE Rel. 8 although each CC in LTE-A remains backward compatible with LTE Rel. 8. This article provides a review of spectrum aggregation techniques, followed by requirements on radio resource management (RRM) functionality in support of CA. On-going research on the different RRM aspects and algorithms to support CA in LTEAdvanced are surveyed. Technical challenges for future research on aggregation in LTE-Advanced systems are also outlined.
Vehicular networks, an enabling technology for Intelligent Transportation System (ITS), smart cities, and autonomous driving, can deliver numerous on-board data services, e.g., road-safety, easy navigation, traffic efficiency, comfort driving, infotainment, etc. Providing satisfactory Quality of Service (QoS) in vehicular networks, however, is a challenging task due to a number of limiting factors such as erroneous and congested wireless channels (due to high mobility or uncoordinated channel-access), increasingly fragmented and congested spectrum, hardware imperfections, and anticipated growth of vehicular communication devices. Therefore, it will be critical to allocate and utilize the available wireless network resources in an ultra-efficient manner. In this paper, we present a comprehensive survey on resource allocation schemes for the two dominant vehicular network technologies, e.g. Dedicated Short Range Communications (DSRC) and cellular based vehicular networks. We discuss the challenges and opportunities for resource allocations in modern vehicular networks and outline a number of promising future research directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.