Over the [Formula: see text]-dimensional supercircle [Formula: see text], we investigate the first [Formula: see text]-relative cohomology space associated with the embedding of the Lie superalgebra [Formula: see text] of contact vector fields in the Lie superalgebra [Formula: see text] of superpseudodifferential operators with smooth coefficients, where [Formula: see text] is the orthosymplectic Lie superalgebra. Likewise, we study the same problem for the affine Lie superalgebra [Formula: see text] instead of [Formula: see text]. We classify generic formal [Formula: see text]-trivial deformations of the [Formula: see text]-module structure on the superspace of the supercommutative algebra [Formula: see text] of pseudodifferential symbols on [Formula: see text].
We investigate the first differential cohomology space associated with the embedding of the affine Lie superalgebra [Formula: see text] on the [Formula: see text]-dimensional supercircle [Formula: see text] in the Lie superalgebra [Formula: see text] of superpseudodifferential operators with smooth coefficients, where [Formula: see text]. Following Ovsienko and Roger, we give explicit expressions of the basis cocycles. We study the deformations of the structure of the [Formula: see text]-module [Formula: see text]. We prove that any formal deformation is equivalent to its infinitesimal part.
Over the [Formula: see text]-dimensional real superspace [Formula: see text], we classify [Formula: see text]-invariant bilinear differential operators acting on the superspaces of weighted densities. We compute the second [Formula: see text]-relative cohomology space of [Formula: see text] with coefficients in the module of [Formula: see text]-densities [Formula: see text] on [Formula: see text], where [Formula: see text] is the Lie superalgebra of contact vector fields on [Formula: see text] and [Formula: see text] is the affine Lie superalgebra. This result allows us to compute the second [Formula: see text]-relative cohomology space of [Formula: see text] with coefficients in the Poisson superalgebra [Formula: see text]. We explicitly give 2-cocycles spanning these cohomology spaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.