TiO2/SBA-15 photocatalysts were successfully prepared by impregnating low loading titania to SBA-15 via slow calcination. The photocatalyst is efficient for fast methylene blue removal via adsorption and photodegradation methods. The impregnation of low TiO2 loading via slow calcination enhanced TiO2 dispersion that preserved the SBA-15 porosity and uniform morphology. High interfacial interaction of TiO2/SBA-15 improves TiO2 photoresponse by narrowing the bandgap, resulting in a stronger redox ability. The methylene blue removal on 10%TiO2/SBA-15 followed the pseudo-second-order kinetic model that reached 67% removal efficiency in 90 min. The synergy between adsorption and photodegradation is responsible for the fast methylene blue removal. These results indicate the importance of maintaining the adsorption capacity in SBA-15 after impregnation with TiO2 for efficient adsorption-photodegradation processes, which can be achieved by controlling the deposition of TiO2 on SBA-15. A low titania loading further reduced the cost of photocatalysts, thus becoming a potential material for environmental pollution treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.