Purpose
This paper aims to investigate the influence of picking sequence, weave design and weft yarn material on the thermal conductivity of the woven fabrics.
Design/methodology/approach
This work includes the development of 36 woven samples with two weave designs (1/1 plain and 3/1 twill), three picking sequences (single, double and three pick insertion) and six different weft yarn materials (cotton, polyester having 48 filaments, polyester with 144 filaments, spun coolmax having Lycra in core and coolmax in sheath, filament coolmax and polypropylene). The thermal conductivity was measured using ALAMBETA tester.
Findings
The results showed that weft yarn material, weave design and picking sequence have a meaningful impact on the thermal conductivity of woven fabric. The value of thermal conductivity was lowest for the fabrics with three pick insertion and 3/1 twill weave in all weft yarn materials.
Research limitations/implications
Plain woven fabric with single pick insertion is feasible for summer wear to enhance the comfort of wearer. By changing the warp yarn grouping and material, improved thermal conductivity/resistance can also be achieved.
Originality/value
The authors have studied the combined effect of different weft yarn materials with different picking sequences and different weave designs on thermal conductivity of the woven fabrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.