Soaring capacity and coverage demands dictate that future cellular networks need to migrate soon toward ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads, and higher backhaul costs. Interestingly, most of the problems that beleaguer network densification stem from legacy networks' one common feature, i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of the aforementioned challenges. In this survey, we review various proposals that have been presented in the literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification, namely: energy efficiency, system level capacity maximization, interference management, and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP) and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up-to-date survey on SARC, CoMP, and D2D. Most importantly, this survey provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies
Device-to-device (D2D) communication has huge potential for capacity and coverage enhancements for next generation cellular networks. The number of potential nodes for D2D communication is an important parameter that directly impacts the system capacity. In this letter, we derive an analytic expression for average coverage probability of cellular user and corresponding number of potential D2D users. In this context, mature framework of stochastic geometry and Poisson point process have been used. The retention probability has been incorporated in Laplace functional to capture reduced path-loss and shortest distance criterion based D2D pairing. The numerical results show a close match between analytic expression and simulation setup
Abstract-Next generation cellular networks require huge capacity, ubiquitous coverage and maximum energy efficiency. In order to meet these targets, Device-to-device (D2D) communication is being considered for future heterogeneous networks (HetNets). In this paper, we consider a three tier hierarchical HetNet by exploiting D2D communication in traditional HetNet. D2D communication is deployed within the HetNet where closely located mobile users are engaged in direct communication without routing the traffic through cellular access network. The proposed configuration mandates to reduce the interference offered by the resultant HetNet by reducing the transmitter-receiver distance and ensuring that the mobile users are transmitting with adaptive power subject to maintaining their desired link quality. In this context, we analyzed and compared the spectral efficiency improvements in hierarchical HetNet against traditional HetNet. Simulation results show that D2D communication offers much higher spectral efficiency as compared to traditional HetNet.
The homogeneous Poisson point process (PPP) is widely used to model spatial distribution of base stations and mobile terminals. The same process can be used to model underlay device-to-device (D2D) network, however, neglecting homophilic relation for D2D pairing presents underestimated system insights. In this paper, we model both spatial and social distributions of interfering D2D nodes as proximity based independently marked homogeneous Poisson point process. The proximity considers physical distance between D2D nodes whereas social relationship is modeled as Zipf based marks. We apply these two paradigms to analyze the effect of interference on coverage probability of distance-proportional power-controlled cellular user. Effectively, we apply two type of functional mappings (physical distance, social marks) to Laplace functional of PPP. The resulting coverage probability has no closed-form expression, however for a subset of social marks, the mark summation converges to digamma and polygamma functions. This subset constitutes the upper and lower bounds on coverage probability. We present numerical evaluation of these bounds on coverage probability by varying number of different parameters. The results show that by imparting simple power control on cellular user, ultra-dense underlay D2D network can be realized without compromising the coverage probability of cellular user.
Abstract-Device-to-device (D2D) communication is being considered an important traffic offloading mechanism for future cellular networks. Coupled with pro-active device caching, it offers huge potential for capacity and coverage enhancements. In order to ensure maximum capacity enhancement, number of nodes for direct communication needs to be identified. In this paper, we derive analytic expression that relates number of D2D nodes (i.e., D2D user density) and average coverage probability of reference D2D receiver. Using stochastic geometry and poisson point process, we introduce retention probability within cooperation region and shortest distance based selection criterion to precisely quantify interference due to D2D pairs in coverage area. The simulation setup and numerical evaluation validate the closed-form expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.