The determination of the transient stability of an electric power system is a crucial step in power system analysis. This paper investigates the transient stability of an IEEE-9 bus system consisting of three generators and nine buses. At first, a load flow analysis is conducted in order to determine the pre-fault conditions. Secondly, fault analysis is performed to analyze post fault conditions like the fast fault clearing time and load switching in order to determine the system stability. For transient stability analysis, Euler and Runga methods are compared and applied on the frequency and rotor angle of the system to analyze the system variations under different fault conditions. The simulations were done on the Power World Simulator (PWS) software. It is concluded that Critical Fault Clearing Time (CFCT) is a very important factor in keeping the power system within the stability bounds. A slight increase in Clearing Time (CT) from the critical value causes un-synchronism.
Transient stability is very imperative in multi-machine interconnected power systems in order to scrutinize and analyze the system’s performance and response. Rotor angle stability and voltage stability are studied in this paper. By applying three-phase symmetrical faults, the transient stability of the IEEE 9 bus system is studied. A characteristic double hump is analyzed in the response of the generator, which is nearer to the fault location. By analyzing the characteristic double hump, the fault location in a large interconnected power system can be determined. It is shown that, as the fault is cleared, the system takes some finite time to return to its prior state. IEEE 9 bus system is chosen as a test system, which standard parameters. MATLAB Simpower System toolbox is used for load flow and transient stability analysis.
The determination of the stability of a power system is a crucial step in the power system analysis. The objective of this study is to understand and investigate the transient stability of IEEE 9-bus system that consists of three generators and nine buses. For this, load flow analysis is firstly performed to determine the pre-fault condition in the system. Fast fault clearing time and load switching is then analysed to determine the system stability. For the transient stability analysis, Euler and Runga method are compared and variations in rotor angle and frequency of the system under different fault conditions are analysed. The simulations are done on Power Word Simulator Software. It is concluded that power system should have very low critical clearing time to operate the relays if faulty section is isolate within very short time, thus, the system can obtain the stability otherwise it will go out of synchronism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.