Rapid urbanization and concretization are the main sources of formation and existence of Urban Heat Island (UHI). Due to high concentration of pollutants in urban environments, the residents are exposed to unexpected health issues. This study aims at delineating the temporal variations in the spatial extent of UHI over Gujranwala using Landsat thermal imagery. It also aims at determining the variations in pollutant concentration in the atmosphere due to vehicle's tailpipe emissions and fossil fuel burning by industrial plants. We used various indices e.g., NDVI, NDBI, NDWI and land surface temperature calculations to investigate spatiotemporal variations in urban growth patterns and their impacts on the UHI. The results show that the UHI enlarged in all direction specially in the north west during the study period which is similar to urban growth trends. There also exist positive correlation between industrial and vehicle's discharge with pollutant's concentration in atmosphere. Remote sensing tools proved elegant in trend mapping and analysis.
Rapid urbanization has become an immense problem in Lahore city, causing various socio-economic and environmental problems. Therefore, it is noteworthy to monitor land use/land cover (LULC) change detection and future LULC patterns in Lahore. The present study focuses on evaluating the current extent and modeling the future LULC developments in Lahore, Pakistan. Therefore, the semi-automatic classification model has been applied for the classification of Landsat satellite imagery from 2000 to 2020. And the Modules of Land Use Change Evaluation (MOLUSCE) cellular automata (CA-ANN) model was implemented to simulate future land use trends for the years 2030 and 2040. This study project made use of Landsat, Shuttle Radar Topography Mission Digital Elevation Model, and vector data. The research methodology includes three main steps: (i) semi-automatic land use classification using Landsat data from 2000 to 2020; (ii) future land use prediction using the CA-ANN (MOLUSCE) model; and (iii) monitoring change detection and interpretation of results. The research findings indicated that there was a rise in urban areas and a decline in vegetation, barren land, and water bodies for both the past and future projections. The results also revealed that about 27.41% of the urban area has been increased from 2000 to 2020 with a decrease of 42.13% in vegetation, 2.3% in barren land, and 6.51% in water bodies, respectively. The urban area is also expected to grow by 23.15% between 2020 and 2040, whereas vegetation, barren land, and water bodies will all decline by 28.05%, 1.8%, and 12.31%, respectively. Results can also aid in the long-term, sustainable planning of the city. It was also observed that the majority of the city's urban area expansion was found to have occurred in the city's eastern and southern regions. This research also suggests that decision-makers and municipal Government should reconsider city expansion strategies. Moreover, the future city master plans of 2050 must emphasize the relevance of rooftop urban planting and natural resource conservation.
Coal is a carbon containing non-renewable fossil fuel and one of the major contributors of climate change and global warming. We used TANSO FTS instrument in order to obtain the level of atmospheric carbon dioxide through datasets obtained from GOSAT satellite. GIOVANNI was also used to obtain atmospheric concentration of various gases. Burning of coal causes emission of greenhouse gases (GHG) and black carbon (BC) in atmosphere which are responsible for nearly 0.3°C of 1°C rise in temperature. The annual average value of carbon emission for the year 2010 and 2019 is 388.4 ppm and 409 ppm respectively. Since the pre-industrial times CO2 concentrations have increased up to100 PPM (36%) in the last two and a half centuries (250 years).In South Asia Dhaka has the worst quality of air as CO2 concentration (6.7%) is higher than the country’s GDP (5.25%) and energy consumption (4.77%). While an increasing trend GHG has been observed in Lahore up to 5.5 %. This study concludes that the high concentration of carbon dioxide in atmosphere is responsible for average rise of 1.2 °C temperature annually. This temperature rise can lead to adverse climatic conditions i.e., melting of glaciers which will consequently rise the sea level various landmasses may disappear by 2050.
The irrigation system throughout the world is affected by the variations in water content due to different soil structure, textures and climate change. The irrigation system supplies sufficient water to the agricultural fields in order to fulfill the prerequisites. The measurement of soil moisture content (62%) is crucial for precision irrigation and sustainable agricultural system. Site specific agricultural system was utilized to overcome all issues related to soil water moisture contents in the paddock. Smart technology was utilized to record GPS signals utilizing the signals reflected on the Earth’s surface. The GPS was utilized to analyze dielectric soil properties and moisture content in proposed areas. The main objective of this study was to determine water content with stimulus soil type, ground cover and compaction on the irrigation system by utilizing the GPS-based techniques. The result indicated positive relation between soil moisture content and the signals reflected on the earth surface. All factors affecting the irrigation system were not related to the reflected signals and did not affect the soil moisture content. The reflectivity was not reduced by ground cover. Whereas, comparative relationship was found between soil moisture content and reflectivity index i.e. soil moisture contents were increased with reflectivity index up to 0.02 %. The results showed that GPS signals system have significant impact on estimation of soil moisture content in precise irrigation system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.