BackgroundIncreasing soil salinization has a detrimental effect on agricultural productivity.Therefore, strategies are needed to induce salinity-tolerance in crop species for sustainable foodproduction. γ-aminobutyric acid (GABA) plays a key role in regulating plant salinity stresstolerance. However, it remains largely unknown how mungbean plants (Vigna radiata L.) respondto exogenous GABA under salinity stress.MethodsThus, we evaluated the effect of exogenous GABA (1.5 mM) on the growth and physiobiochemicalresponse mechanism of mungbean plants to saline stress (0-, 50-, and 100 mM [NaCland Na2SO4, at a 1:1 molar ratio]).ResultsIncreased saline stress adversely affected mungbean plants' growth and metabolism. Forinstance, leaf-stem-root biomass (34- and 56%, 31- and 53%, and 27- and 56% under 50- and 100mM, respectively]) and chlorophyll concentrations declined. The carotenoid level increased (10%)at 50 mM and remained unaffected at 100 mM. Hydrogen peroxide (H2O2), malondialdehyde(MDA), osmolytes (soluble sugars, soluble proteins, proline), total phenolic content, andenzymatic activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase(POD), glutathione reductase (GTR), and polyphenol oxidation (PPO) were significantlyincreased. In leaves, salinity caused a significant increase in Na+ concentration but a decrease inK+ concentration, resulting in a low K+/Na+ concentration (51- and 71% under 50- and 100- mMstress). Additionally, nitrogen concentration and the activities of nitrate reductase (NR) andglutamine synthetase (GS) decreased significantly. The reduction in glutamate synthase (GOGAT)activity was only significant (65%) at 100 mM stress. Exogenous GABA decreased Na+, H2O2,and MDA concentrations but enhanced photosynthetic pigments, K+ and K+/Na+ ratio, Nmetabolism, osmolytes, and enzymatic antioxidant activities, thus reducing salinity-associatedstress damages, resulting in improved growth and biomass.ConclusionExogenous GABA may have improved the salinity tolerance of mungbean plants by maintaining their morpho-physiological responses and reducing the accumulation of harmfulsubstances under salinity. Future molecular studies can contribute to a better understanding of themolecular mechanisms by which GABA regulates mungbean salinity tolerance.
Background Our recently reported doubled haploid (DH) induction lines e.g., Y3380 and Y3560 are allo-octoploid (AAAACCCC, 2n = 8× ≈ 76), which can induce the maternal parent to produce DH individuals. Whether this induction process is related to the production of aneuploid gametes form male parent and genetic characteristics of the male parent has not been reported yet. Results Somatic chromosome counts of DH inducer parents, female wax-less parent (W1A) and their F1 hybrid individuals revealed the reliability of flow cytometry analysis. Y3560 has normal chromosome behavior in metaphase I and anaphase I, but chromosome division was not synchronized in the tetrad period. Individual phenotypic identification and flow cytometric fluorescence measurement of F1 individual and parents revealed that DH individuals can be distinguished on the basis of waxiness trait. The results of phenotypic identification and flow cytometry can identify the homozygotes or heterozygotes of F1 generation individuals. The data of SNP genotyping coupled with phenotypic waxiness trait revealed that the genetic distance between W1A and F1 homozygotes were smaller as compared to their heterozygotes. It was found that compared with allo-octoploids, aneuploidy from allo-octoploid segregation did not significantly increase the DH induction rate, but reduced male infiltration rate and heterozygous site rate of induced F1 generation. The ploidy, SNP genotyping and flow cytometry results cumulatively shows that DH induction is attributed to the key genes regulation from the parents of Y3560 and Y3380, which significantly increase the induction efficiency as compared to ploidy. Conclusion Based on our findings, we hypothesize that genetic characteristics and aneuploidy play an important role in the induction of DH individuals in Brassca napus, and the induction process has been explored. It provides an important insight for us to locate and clone the genes that regulate the inducibility in the later stage.
A two-year field experiment was conducted to address the effects of mixture composition and legume-grass seeding ratio on the biomass yield and nutritional quality of legume–grass mixtures. Alfalfa (Medicago sativa L.), white clover (Trifolium repens L.), red clover (Trifolium pratense L.), orchardgrass (Dactylis glomerata L.), perennial ryegrass (Lolium perenne L.), and tall fescue (Festuca arundinacea Schreb.) were selected as plant materials. A total of seven legume–grass mixtures (A1: white clover, orchardgrass, and tall fescue; A2: alfalfa, orchardgrass, and tall fescue; B1: alfalfa, white clover, orchardgrass, and tall fescue; B2: red clover, white clover, orchardgrass, and tall fescue; C1: alfalfa, white clover, orchardgrass, tall fescue, and perennial ryegrass; C2: red clover, white clover, orchardgrass, tall fescue, and perennial ryegrass; and D: alfalfa, red clover, white clover, orchardgrass, tall fescue, and perennial ryegrass) were sown in two legume-grass seeding ratios (L:G) of 4:6 and 5:5. The results showed that A2 produced a higher two-year average biomass yield (14.20 t/ha) in L:G of 4:6 than that of other mixtures. The grasses biomass yield proportion decreased while legume biomass yield proportion increased with prolonged establishment time. A2 showed a higher crude protein yield (2.5 t/ha) in L:G of 4:6. C2 and A1 showed lower neutral detergent fiber (4.6 t/ha) and acid detergent fiber (2.8 t/ha) yields in L:G 5:5, while diverse mixtures showed higher water-soluble carbohydrate yields. Overall, A2 showed a relative feed value of 146.50 in L:G of 4:6, indicating that it has not only produced the higher biomass yield but also had a better nutritional quality.
This study was aimed to investigate the effects of organic carbon and silicon fertilizers on the lodging resistance, yield, and economic performance of rapeseed. Two cultivars, namely Jayou (lodging-resistant) and Chuannongyou (lodging-susceptible), were selected to evaluate the effects of various fertilizer treatments on rapeseed culm morphology, lignin accumulation, and their relationships with their lodging resistance indices. The results showed that both organic carbon and silicon fertilizer applications increased the plant height, basal stem diameter, internode plumpness, and bending strength of rapeseed in both the studied years. The bending strength was significantly and positively correlated with the lodging resistance index and lignin content. It was found that both organic carbon and silicon fertilizers had improved the activities of lignin biosynthesis enzymes (phenylalanine ammonia-lyase, 4-coumarate:CoA ligase, cinnamyl alcohol dehydrogenase, and peroxiredoxins) and their related genes to increase lignin accumulation in the culm, which ultimately improved the lodging resistance. At the same time, the thickness of the stem cortex, vascular bundle area, and xylem area was increased, and the stem strength was improved. The effect of silicon fertilizer was better than that of organic carbon fertilizer, but there was no significant difference with the mixed application of silicon fertilizer and organic carbon fertilizer. Similarly, silicon fertilizer increased the number of pods, significantly increased the yield, and improved the economic benefit, while organic carbon fertilizer had no significant effect on the yield. Therefore, we believe that organic carbon and silicon fertilizer can improve the lodging resistance of rape stems by improving the lignin accumulation and the mechanical tissue structure. Still, the effect of silicon fertilizer is the best. Considering the economic benefits, adding silicon fertilizer can obtain more net income than the mixed application of silicon fertilizer and organic carbon fertilizer.
Calligonum mongolicum is a phreatophyte playing an important role in sand dune fixation, but little is known about its responses to drought and P fertilization. In the present study, we performed a pot experiment to investigate the effects of P fertilization under drought or well-watered conditions on multiple morpho-physio-biochemical attributes of C. mongolicum seedlings. Drought stress leads to a higher production of hydrogen peroxide (H2O2) and malondialdehyde (MDA), leading to impaired growth and metabolism. However, C. mongolicum exhibited effective drought tolerance strategies, including a higher accumulation of soluble sugars, starch, soluble protein, proline, and significantly higheractivities of peroxidase (POD) and catalase (CAT) enzymes. P fertilization increased the productivity of drought-stressed seedlings by increasing their growth, assimilative shoots relative water content, photosynthetic pigments, osmolytes accumulation, mineral nutrition, N assimilation, and reduced lipid peroxidation. Our findings suggest the presence of soil high P depletion and C. mongolicum high P requirements during the initial growth stage. Thus, P can be utilized as a fertilizer to enhance the growth and productivity of Calligonum vegetation and to reduce the fragility of the hyper-arid desert of Taklamakan in the context of future climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.