In visible light communication (VLC), the data is transmitted by modulating the light emitting diode (LED). The data-rate is throttled by the narrow modulation bandwidth of LEDs, which becomes a barrier for attaining high transmission rates. Non-orthogonal multiple access (NOMA) is a new scheme envisioned to improve the system capacity. In addition to multiple access schemes, optimization techniques are applied to further improve the data rate. In this letter, convex optimization is applied to NOMA-based VLC system for downlink. The proposed optimization system is analyzed in terms of the bit error rate (BER) and the sum-rate.
Due to the growing number of users, power, and spectral effectiveness, most communication systems are complex and difficult to implement on a large scale. Artificial Intelligence (AI) has played an outstanding role in the implementation of theoretical systems in the real world, with less complexity achieving better results. In this direction, we compare the Non-Orthogonal Multiple Access (NOMA) technique for a multiuser Visible Light Communication (VLC) system with Successive Interference Cancellation (SIC) for two types of detectors: (1) the deep learning-based system and (2) the traditional maximum likelihood (ML) decoder-based system. For multiplexing, we compare the variations of novel Orbital Angular Momentum (OAM) multiplexing and Orthogonal Frequency Division Multiplexing (OFDM) with Index Modulation (IM). In this article, we implement OFDM-IM and OAM-IM for four users for the Gaussian fading MIMO Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) VLC channels. The suggested systems’ bit error rate (BER) performances are compared in simulations for a wide range of Signal-to-Noise Ratios (SNRs), which shows that deep learning-based systems outperform the ML-based system for both users to ensure better decoding at the receiver end, especially at higher SNR values. The detection error is lower in a deep learning-based system at around 20% and around 30% for low SNR and high SNR values, respectively.
The communication link between the base station and the mobile sensor networks, such as multi-agent systems for collaborative tasks which include ground mobile robots and drones, is crucial for localization and success of tasks in indoor environments. The Power-domain Non-Orthogonal Multiple Access (P-NOMA) is an emerging multiplexing technique that enables the base station to accumulate signals for different agents using the same time-frequency channel. The environment information such as distance from the base station is required at the base station to calculate communication channel gains and allocate suitable signal power to each agent. The accurate estimate of the position for power allocation of P-NOMA in a dynamic environment is challenging due to changing location of the end-agent and shadowing. In this paper, we take advantage of the two-way Visible Light Communication (VLC) link to: (1) estimate the position of the end-agent in a real-time indoor environment based on the signal power received at the base station and (2) allocate resources using the Simplified Gain Ratio Power Allocation (S-GRPA) scheme with the look-up table method. In addition, we use the Euclidean Distance Matrix (EDM) to estimate the location of the end-agent whose signal was lost due to shadowing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.