The integral engine parts, such as camshaft members, are usually not preferably made of ceramic-reinforced MMC because the margin of compromise on the engine performance is small. However, the lightweight and wear-resistant nature of the mentioned materials can benefit fuel consumption without necessarily compromising engine performance. In this study, Al (AA2124) matrix is reinforced with ceramic particles of two different types (SiC, B4C), size distributions (B4C: 1–7, SiC: 2 and 20 μm), and volume fractions (0, 10, 20, 30 vol.%) to manufacture camshaft cams (lobes). While MMC cams are manufactured by powder metallurgy (300 MPa, 615°C, 30 minutes), spherical graphite cast iron (GGG40) cams are prepared by casting, induction hardening, and machining. The wear behavior of MMC cams is compared with the reference unreinforced AA2124 and conventionally used cast iron cams under dry and virtually created engine-like wet conditions. It was attempted to correlate the percentage increase in the roughness and weight loss with the structure of the cams using SEM, EDX, and macroscopy analysis. Results showed that the initiation of a three-body abrasive wear mechanism for 30 vol.% of the larger SiC particles caused lower wear resistance in the cams under dry conditions. As for the wet conditions, although the cams’ wear resistance increased with increasing ceramic particles’ content, it resulted in enhanced wear in the counterface when larger ceramic particles were used as reinforcement. Overall, higher ceramic content and larger particle size encourage three-body abrasive wear between the interacting surfaces and assist in degraded wear resistance under wet conditions.
Deformation processed wires are used in the fields which demand the combination of contradictory properties such as mechanical strength and electrical conductivity. For the last 4–5 decades, scientists have focused on fabricating Cu and Al matrix wires using various plastic deformation techniques. While the high electrical conductivity is ensured through mentioned elements, the strength is achieved by orderly employment of plastic deformation and various heat treatments for basically achieving microscale filamentary structure of reinforcing elements. However, the strict selection criteria of starting materials and contradicting nature of processing regime and expected properties require proper knowledge of materials-microstructure and fabrication-property correlations. This paper summarizes the manufacturing methods, processing parameters-microstructure interactions, consequential mechanical and electrical properties and finally, current, and potential applications of deformation processed bi-metallic composite wires. It will help engineers, through provided comparative analysis, choose appropriate processing routes and starting materials for the realization of high strength/conductivity wires as well as guide what to expect in terms of targeted properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.