With rapid population growth in cities, to allow full use of modern technology, transportation networks need to be developed efficiently and sustainability. A significant problem in the traffic motion barrier is dynamic traffic flow. To manage traffic congestion problems, this paper provides a method for forecasting traffic congestion with the aid of a Deep neural network that minimizes blockage and plays a vital role in traffic smoothing. In the proposed model, data is collected and received by using smart Internet of things enabled devices. With the help of this model, data of the previous junction of signals will send to another junction and update after that next layer named as intelligence prediction for the congestion layer will receive data from sensors and the cloud which is used to find out the congestion point. The proposed TC2S-DNN model achieved the accuracy of 98.03 percent and miss rate of 1.97 percent which is better then previous published approaches.
The objective of this paper is to calculate the time complexity of the colored camera depth map hand edge closing algorithm of the hand gesture recognition technique. It has been identified as hand gesture recognition through human-computer interaction using color camera and depth map technique, which is used to find the time complexity of the algorithms using 2D minima methods, brute force, and plane sweep. Human-computer interaction is a very much essential component of most people's daily life. The goal of gesture recognition research is to establish a system that can classify specific human gestures and can make its use to convey information for the device control. These methods have different input types and different classifiers and techniques to identify hand gestures. This paper includes the algorithm of one of the hand gesture recognition “Color camera depth map hand edge recognition” algorithm and its time complexity and simulation on MATLAB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.