This study describes a Natural Language Processing (NLP) toolkit, as the first contribution of a larger project, for an under-resourced language—Urdu. In previous studies, standard NLP toolkits have been developed for English and many other languages. There is also a dire need for standard text processing tools and methods for Urdu, despite it being widely spoken in different parts of the world with a large amount of digital text being readily available. This study presents the first version of the UNLT (Urdu Natural Language Toolkit) which contains three key text processing tools required for an Urdu NLP pipeline; word tokenizer, sentence tokenizer, and part-of-speech (POS) tagger. The UNLT word tokenizer employs a morpheme matching algorithm coupled with a state-of-the-art stochastic n-gram language model with back-off and smoothing characteristics for the space omission problem. The space insertion problem for compound words is tackled using a dictionary look-up technique. The UNLT sentence tokenizer is a combination of various machine learning, rule-based, regular-expressions, and dictionary look-up techniques. Finally, the UNLT POS taggers are based on Hidden Markov Model and Maximum Entropy-based stochastic techniques. In addition, we have developed large gold standard training and testing data sets to improve and evaluate the performance of new techniques for Urdu word tokenization, sentence tokenization, and POS tagging. For comparison purposes, we have compared the proposed approaches with several methods. Our proposed UNLT, the training and testing data sets, and supporting resources are all free and publicly available for academic use.
Automatic paraphrase detection is the task of measuring the semantic overlap between two given texts. A major hurdle in the development and evaluation of paraphrase detection approaches, particularly for South Asian languages like Urdu, is the inadequacy of standard evaluation resources. The very few available paraphrased corpora for these languages are manually created. As a result, they are constrained to smaller sizes and are not very feasible to evaluate mainstream data-driven and deep neural networks (DNNs)-based approaches. Consequently, there is a need to develop semi- or fully automated corpus generation approaches for the resource-scarce languages. There is currently no semi- or fully automatically generated sentence-level Urdu paraphrase corpus. Moreover, no study is available to localize and compare approaches for Urdu paraphrase detection that focus on various mainstream deep neural architectures and pretrained language models. This research study addresses this problem by presenting a semi-automatic pipeline for generating paraphrased corpora for Urdu. It also presents a corpus that is generated using the proposed approach. This corpus contains 3147 semi-automatically extracted Urdu sentence pairs that are manually tagged as paraphrased (854) and non-paraphrased (2293). Finally, this paper proposes two novel approaches based on DNNs for the task of paraphrase detection in Urdu text. These are Word Embeddings n-gram Overlap (henceforth called WENGO), and a modified approach, Deep Text Reuse and Paraphrase Plagiarism Detection (henceforth called D-TRAPPD). Both of these approaches have been evaluated on two related tasks: (i) paraphrase detection, and (ii) text reuse and plagiarism detection. The results from these evaluations revealed that D-TRAPPD ( $F_1 = 96.80$ for paraphrase detection and $F_1 = 88.90$ for text reuse and plagiarism detection) outperformed WENGO ( $F_1 = 81.64$ for paraphrase detection and $F_1 = 61.19$ for text reuse and plagiarism detection) as well as other state-of-the-art approaches for these two tasks. The corpus, models, and our implementations have been made available as free to download for the research community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.