The platform of a microscopic traffic simulation provides an opportunity to study the driving behavior of vehicles on a roadway system. Compared to traditional conventional cars with human drivers, the car-following behaviors of autonomous vehicles (AVs) and connected autonomous vehicles (CAVs) would be quite different and hence require additional modeling efforts. This paper presents a thorough review of the literature on the car-following models used in prevalent micro-simulation tools for vehicles with both human and robot drivers. Specifically, the car-following logics such as the Wiedemann model and adaptive cruise control technology were reviewed based on the vehicle’s dynamic behavior and driving environments. In addition, some of the more recent “AV-ready (autonomous vehicles ready) tools” in micro-simulation platforms are also discussed in this paper.
The scientific advancements in the vehicle and infrastructure automation industry are progressively improving nowadays to provide benefits for the end-users in terms of traffic congestion reduction, safety enhancements, stress-free travels, fuel cost savings, and smart parking, etc. The advances in connected, autonomous, and connected autonomous vehicles (CV, AV, and CAV) depend on the continuous technology developments in the advanced driving assistance systems (ADAS). A clear view of the technology developments related to the AVs will give the users insights on the evolution of the technology and predict future research needs. In this paper, firstly, a review is performed on the available ADAS technologies, their functions, and the expected benefits in the context of CVs, AVs, and CAVs such as the sensors deployed on the partial or fully automated vehicles (Radar, LiDAR, etc.), the communication systems for vehicle-to-vehicle and vehicle-to-infrastructure networking, and the adaptive and cooperative adaptive cruise control technology (ACC/CACC). Secondly, for any technologies to be applied in practical AVs related applications, this study also includes a detailed review in the state/federal guidance, legislation, and regulations toward AVs related applications. Last but not least, the impacts of CVs, AVs, and CAVs on traffic are also reviewed to evaluate the potential benefits as the AV related technologies penetrating in the market. Based on the extensive reviews in this paper, the future related research gaps in technology development and impact analysis are also discussed.
Transportation agencies report that millions of crashes are caused by poor road conditions every year, which makes the localization of roadway anomalies extremely important. Common methods of road condition evaluation require special types of equipment that are usually expensive and timeconsuming. Therefore, the use of smartphones has become a potential alternative. However, differences in the sensitivity of their inertial sensors and their sample rate can result in measurement inconsistencies. This study validated those inconsistencies by using three different types of smartphones to collect data from the traversal of both a paved and an unpaved road. Three calibration methods were used including the reference-mean, reference-maximum, and referenceroad-type methods. Statistical testing under identical conditions of device mounting using the same vehicle revealed that the roughness indices derived from each device and road type are normally distributed with unequal means. Consequently, applying a calibration coefficient to equalize the means of the distributions of roughness indices produced from any device using the reference mean method resulted in consistent measurements for both road types.
With climate change and the resulting rise in temperatures, wildfire risk is increasing all over the world, particularly in the Western United States. Communities in wildland–urban interface (WUI) areas are at the greatest risk of fire. Such fires cause mass evacuations and can result in traffic congestion, endangering the lives of both citizens and first responders. While existing wildfire evacuation research focuses on social science surveys and fire spread modeling, they lack data on traffic operations during such incidents. Additionally, traditional traffic data collection methods are unable to gather large sets of data on historical wildfire events. However, the recent availability of connected vehicle (CV) data containing lane-level precision historical vehicle movement data has enabled researchers to assess traffic operational performance at the region and timeframe of interest. To address this gap, this study utilized a CV dataset to analyze traffic operations during a short-notice evacuation event caused by a wildfire, demonstrating that the CV dataset is an effective tool for accurately assessing traffic delays and overall traffic operation conditions during the selected fire incident. The findings also showed that the selected CV dataset provides high temporal coverage and similar travel time estimates as compared to an alternate method of travel time estimation. The study thus emphasized the importance of utilizing advanced technologies, such as CV data, to develop effective evacuation strategies and improve emergency management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.