Thailand has been implementing its Alternative Energy Development Plan aiming to replace 20–25% of fossil fuels with locally produced biofuels by 2036. The partial substitution of fossil diesel with fatty acid methyl ester (FAME) derived from palm oil is one of the major options but blending beyond 20% of FAME is a concern for use in conventional diesel engines. This problem has led to the consideration of other bio-based diesels also derived from palm oil; namely, partially hydrogenated fatty acid methyl ester (H-FAME) and bio-hydrogenated diesel (BHD). This study performed a comparative life cycle assessment of various bio-based diesels using the ReCiPe life cycle impact assessment method. The results showed that in comparison to fossil diesel, bio-based diesels have superior performance for global warming and fossil resource scarcity, but an inferior performance for eutrophication, terrestrial acidification, human toxicity, and land use. Considering the collective environmental damages, BHD performed the worst for human health, and all the bio-based diesels showed poor performance for ecosystem quality, while diesel showed poor performance for resource availability. Among the bio-based diesel products, BHD has higher environmental burdens than FAME and H-FAME. Improvements have been suggested to enhance the environmental performance of the bio-based diesels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.