Electroless nickel-boron coatings were deposited from a novel deposition bath that was stabilizer-free. Those coatings were analyzed by DSC to determine the crystallization temperature of nickel-boride phases, and then the best heat treatment conditions for the new coatings were selected using the Knoop hardness test and XRD. The results of DSC analysis and XRD were coherent with the findings of previous studies, which shows that the new coating has a boron content lower than 4% wt. The maximum hardness was obtained after heat treatment at 300 °C for 4 h and reached 1196 ± 120 hk50, which is much higher than the as-deposited coating. The heat-treated coatings were then fully characterized using optical and scanning electron microscopy, as well tribological and corrosion tests. Various sliding tests (ball-on-disk and ball-on-flat configurations) were conducted to analyze the coefficient of friction (COF) and wear behavior of the coatings. The maximum von Mises stress was calculated, and values of 624 MPa and 728 MPa were obtained for the ball-on-disk and ball-on flat, respectively, at a depth close to 14 µm from the surface, confirming the suitability of the applied load. Abrasive, adhesive, and fatigue wear mechanisms were observed on the worn sample morphology using SEM. It has been determined that during the corrosion test the OCP and corrosion potential values for the heat-treated coating increase as compared with the as-deposited one, whereas its corrosion resistance decreases.
Alloyed-transition metal dichalcogenide (TMD) coatings have been under investigation as multi-environment lubricants for the past few decades. These coatings display very low coefficient of friction properties at elevated temperatures. Studies on the annealing of these low-friction coatings are missing in the literature. For the first time, in this study, the annealing of the W-S-N dry lubricant coatings was carried out to study its effects on the composition, morphology, crystal structure and hardness of the coatings. The W-S-N coatings were deposited by direct current (DC) reactive magnetron sputtering. The analysis was carried out for as-deposited, 200 °C and 400 °C annealed coatings. The as-deposited coatings have N content in the range of 0–25.5 at. %. The coatings are compact and the densification increased with the increase in N-alloying. All the coatings are crystalline except the highest N-alloyed coating which is X-ray amorphous. A maximum hardness of 8.0 GPa was measured for the coating alloyed with 23 at. % N. Annealing did not affect the composition and morphology of the coatings, while some variations were observed in their crystal structure and hardness. The maximum hardness increased from 8 GPa to 9.2 GPa after 400 °C annealing of the 23 at. % N-alloyed coating.
The application of sol–gel on plasma electrolytic oxidation (PEO) coatings can increase wear resistance by sealing the surface defects such as pores and cracks in the outer layer of the PEO layer and strengthen the coating. Four different sol–gel formulations based on precursors—(3-glycidyloxypropyl)trimethoxysilane (GPTMS), methyltriethoxysilane (MTES), methacryloxypropyltrimethoxysilane (MAPTMS), (3-aminopropyl)triethoxysilane (APTES), and zirconium(IV) propoxide (ZTP) along with tetraethoxysilane (TEOS)—were used to seal PEO pores, and the samples were tested tribologically. A sliding reciprocating tribometer was used to carry out a wear test with an alumina ball as the counter body in two different conditions: (a) 2.5 N load for 20 min, and (b) 3 N load for 40 min. The coefficient of friction and wear rate as volume loss per unit sliding length were obtained for all sol–gel-sealed specimens and unsealed PEO-coated and bare AA2024 substrate. 3D mechanical profilometer surface scans were used to compare the depth of wear traces. The elemental color mapping using SEM and EDS revealed that silicon remains present in the wear tracks of PEO coatings sealed with sol–gel layers containing GPTMS (PSG) and ZTP (PSG-ZT). GPTMS (PSG) was able to fill the pores of the PEO layer efficiently due to its cross-linked network. Moreover, sol–gel containing ZTP (PSG-ZT) was deposited as a thick layer on top of the PEO layer which provided good lubrication and resistance to wear. However, other sol–gel formulations (PSG-MT and PSG-AP) were worn out during tests at a higher load (3 N). The most stable friction coefficient (COF) and specific wear rates were observed with sol–gels with GPTMS and ZTP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.