The inoculation methods, the fungal strains, and several other factors are known to influent the success of fungal entomopathogens colonization in plants. The physiological status of the plant could also be another determinant. In the present study, the ability of three strains of Beauveria bassiana and one strain of Metarhizium anisopliae to successfully colonize Citrus limon plants and the influence of seedling age on endophytic colonization success was examined. Three, 4, and 6 months old seedlings were inoculated with 10 mL of 1 × 108 conidial·mL−1 suspensions of each of the four fungal strains via foliar spraying. All fungal strains successfully colonized citrus seedlings and were sustained up to 2 months in colonized plants irrespective of the seedling age, with differences in the mean percentage colonization recorded at various post-inoculation periods among the fungal strains. The highest percent endophytic fungi recovery rate was recorded in the 3 months old seedlings, where fungal mycelia of inoculated fungi were successfully re-isolated from 65.6% of the untreated newly developed leaf and stem tissues. One strain of B. bassiana, BB Fafu-12, significantly improved seedling height and leaf number. The study demonstrates the influence of seedling age on B. bassiana and M. anisopliae successful colonization in the citrus plant.
The effect of the entomopathogenic fungus Beauveria bassiana (BB-12) on the biological characteristics of Tamarixia radiata parasitizing Diaphorina citri was studied under laboratory conditions. Twenty 3rd–5th instar nymphs were exposed to a single already-mated female parasitoid (1 day old) and removed after 24 h. Subsequently, the nymphs were sprayed at 1, 24 and 48 h post-exposure with 1 × 108 conidial mL−1 suspension. The percentage of parasitism recorded was 22%, 35% and 41% at 1, 24 and 48 h, respectively. The emergence rate varied between 28%, 51% and 49% at 1, 24 and 48 h, respectively. In a subsequent experiment, nymphs of D. citri were sprayed with 1 × 108 conidial mL−1 suspension and then exposed to T. radiata at 1, 24 and 48 h post-spraying to allow for parasitism to occur. The percentage of parasitism recorded was 18%, 27% and 28% at 1, 24 and 48 h, respectively, significantly lower than the parasitism rate recorded in the control (48%). The percentage of emergence varied between 24%, 44% and 45% at 1, 24 and 48 h, respectively. In both experiments, no significant difference was observed in the pre-adult duration (days) and the sex ratio of F1 generation. Meanwhile, significant differences were observed in the longevity of the F1 generation of females and males of T. radiata in a treatment consisting of spraying the fungal suspension and the control. Overall, the findings of the current study revealed a negative interaction between T. radiata and B. bassiana in controlling D. citri nymphs. This outcome is believed to be a result of the antagonistic effects of B. bassiana on the developmental process of the pre-adult stages of the parasitoid. However, our results also show that with a properly timed application (allowing parasitism to occur over an extended period of time before the application of the fungus), T. radiata could potentially be used in combination with B. bassiana for the successful biological control of D. citri. This should be carried out in order to minimize the potentially negative interactions between these two biological agents.
No abstract
The parasitism rate and host-feeding rate of Tamarixia radiata (Hymenoptera: Eulophidae), an ectoparasitoid of Diaphorina citri (Hemiptera: Liviidae), were evaluated at 20, 27.5, 30, and 35°C, at 70 ± 5% RH, and 14 h of photoperiod. The biological control efficacy of T. radiata was evaluated by linking the age-stage predation rate with the two-sex life table. The net host-feeding rate (C0) by T. radiata was 32.05, 54.40, 17.25, and 1.92 nymphs per female parasitoid at 20, 27.5, 30, and 35°C, respectively. The total net nymphs killing rate (Z0) was 103.02, 223.82, 72.95, and 6.60 nymphs per female parasitoid at 20, 27.5, 30, and 35°C, respectively. Noneffective parasitism rate was observed at 35°C because of high mortality at this temperature. Our results indicated that temperature had meaningful effects on parasitism and host-feeding rate parameters in the laboratory, and may affect biological control efficiency of the parasitoid in the field. The highest host-feeding rate and total biological control efficiency of T. radiata were recorded at 27.5°C. Most importantly, we found that host-feeding activity of the parasitoid is temperature-dependent, and changed across temperature regimes: the host-feeding rate increased as the temperature increased up to 30°C, started to decrease after this temperature and declined to its minimum level at 35°C. This information is valuable for developing biological control and integrated pest management techniques for Asian citrus psyllid management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.