Intestinal epithelial cells secrete proinflammatory cytokines and chemokines that are crucial in mucosal defense. However, this secretion must be tightly regulated, because uncontrolled secretion of proinflammatory mediators may lead to chronic inflammation and mucosal damage. The aim of this study was to determine whether somatostatin, secreted within the intestinal mucosa, regulates secretion of cytokines from intestinal epithelial cells. The spontaneous as well as TNF-α- and Salmonella-induced secretion of IL-8 and IL-1β derived from intestinal cell lines Caco-2 and HT-29 was measured after treatment with somatostatin or its synthetic analogue, octreotide. Somatostatin, at physiological nanomolar concentrations, markedly inhibited the spontaneous and TNF-α-induced secretion of IL-8 and IL-1β. This inhibition was dose dependent, reaching >90% blockage at 3 nM. Furthermore, somatostatin completely abrogated the increased secretion of IL-8 and IL-1β after invasion by Salmonella. Octreotide, which mainly stimulates somatostatin receptor subtypes 2 and 5, affected the secretion of IL-8 and IL-1β similarly, and the somatostatin antagonist cyclo-somatostatin completely blocked the somatostatin- and octreotide-induced inhibitory effects. This inhibition was correlated to a reduction of the mRNA concentrations of IL-8 and IL-1β. No effect was noted regarding cell viability. These results indicate that somatostatin, by directly interacting with its specific receptors that are expressed on intestinal epithelial cells, down-regulates proinflammatory mediator secretion by a mechanism involving the regulation of transcription. These findings suggest that somatostatin plays an active role in regulating the mucosal inflammatory response of intestinal epithelial cells after physiological and pathophysiological stimulations such as bacterial invasion.
Inflammation is the clinical expression of chemical mediators such as the pro-inflammatory cytokine tumor necrosis factor (TNF-)-alpha produced by macrophages and other cells activated in the immune response. Hence, agents that can inhibit TNF-alpha may be useful in treating arthritis and other diseases resulting from uncontrolled inflammation. We now report that the cleavage of heparin by the enzyme heparinase I generates sulfated disaccharide (DS) molecules that can inhibit the production of TNF-alpha. Administration of nanogram amounts of the sulfated DS molecules to experimental animals inhibited delayed-type hypersensitivity to a skin sensitizer and arrested the joint swelling of immunologically induced adjuvant arthritis. Notably, the sulfated DS molecules showed a bell-shaped dose-response curve in vitro and in vivo: decreased effects were seen using amounts of the DS molecules higher than optimal. Thus, molecular regulators of inflammation can be released from the natural molecule heparin by the action of an enzyme.
Inflammation is a response of the immune system to foreign insult or physical damage. Various cellular and humoral components of the immune system are recruited from the vascular system and are translocated through endothelium, and into extracellular matrix (ECM) compartments of inflamed tissues. This translocation is orchestrated by various types of accessory signals, in the form of soluble or complexed molecules, which evoke remarkable transitions in leukocyte activities. Recruited inflammatory cells give rise to mechanisms of migration, including the secretion of enzymes and other pro-inflammatory mediators and the alteration of their adhesive contacts with the ECM. Hence, migrating cells secrete enzymes, chemokines, and cytokines which interact with the ECM, and thereby, provide the cells with intrinsic signals for coordinating their responses. Resultant products of enzymatic modifications to the ECM microenvironment, such as cytokine- and ECM-derived molecules, may be also part of a cell-signaling mechanism that provides leukocytes with information about the nature of their inflammatory activity; such a mechanism may give the immune system data that can be cognitively interpreted for consequential activities. This article reviews the findings that support this notion and describe the dynamic interactions between participants of the inflammatory processes.
SUMMARYWe have found previously that disaccharides (DS) enzymatically generated from heparin or heparan sulphate can modulate tumour necrosis factor-a (TNF-a) secretion from immune cells in vitro and cell-mediated immune reactions in vivo. Here, we show that such DS can modulate the adhesion and migration of human T cells. We found that certain heparin-and heparan sulphatederived DS induced, in a dose-dependent manner, the adhesion of human T cells to both extracellular matrix (ECM) and immobilized ®bronectin (FN); maximal T-cell adhesion occurred with 1 ng/ml of DS. The levels of T-cell adhesion to ECM that were induced by the tested DS molecules resembled those induced by the prototypic chemokine, macrophage in¯ammatory protein 1b (MIP-1b). However, the kinetics of DS-induced T-cell adhesion to FN resembled that induced by phorbol myristate acetate (PMA), but not that induced by MIP-1b. This adhesion appeared to involve b 1 integrin recognition and activation, and was associated with speci®c intracellular activation pathways. Although a ®rst exposure of T cells to certain DS molecules appeared to result in cell adhesion, a subsequent exposure of T cells to pro-adhesive chemokines, such as MIP-1b or RANTES, but not to other pro-adhesive stimuli, for example interleukin-2 or CD3 cross-linking, resulted in inhibition of T-cell adhesion to and chemotactic migration through FN. Hence, we propose that the breakdown products of tissues generated by in¯ammatory enzymes are part of an intrinsic functional programme, and not necessarily molecular waste. Moreover, because the DS molecules exert their modulatory functions within a limited time, it appears that the historical encounters of the tissue-invading cells with the constituents of in¯amed loci may dictate the cells' behaviour upon subsequent exposure to proin¯ammatory mediators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.